
Motion-planning with Global Temporal Logic Specifications
for Multiple Nonholonomic Robotic Vehicles

Zetian Zhang∗ and Raghvendra V. Cowlagi∗†

Abstract— We investigate motion-planning for a team of
robotic vehicles assigned to a collaborative intelligent task in
the form of global linear temporal logic (LTL) specifications.
Specifically, we extend recent results from the literature to
include nonholonomic kinematic constraints on the robotic
vehicles. The problem formulation relies on workspace cell
decompositions, where certain regions of interest in the robots’
shared workspace are defined. The proposed algorithm involves
two graphs: first, the topological graph arising from the
workspace cell decomposition, and second, a graph arising from
vertex aggregation on the previous graph. The main technical
innovation is the application of the so-called method of lifted
graphs to determine the feasibility of edge transitions in these
graphs. We illustrate the proposed approach with numerical
simulation examples.

I. INTRODUCTION

The demand for higher degrees of autonomy in robotic
vehicles has led to recent research in intelligent control,
and specifically, in the synthesis of control laws subject
to temporal logic (TL) specifications. TL specifications can
concisely encode intelligent tasks for robotic vehicles. The
problem of control law synthesis is then performed in two
broad steps: (1) discrete abstraction, which involves the
generation of a finite-state model of the vehicle’s motion,
and (2) the application of formal methods to determine
sequences of transitions in this model that satisfy the given
TL specifications. The first step of discrete abstraction is
arguably more difficult, and is a subject of ongoing research
in the context of nonlinear vehicle dynamical models.

We investigate the archetypal problem of motion-planning
for a team of robotic vehicles assigned to a collaborative
intelligent task in the form of global TL specifications to
be satisfied by the team as a whole. Specifically, we extend
recent results from the literature on this problem to include
nonholonomic kinematic constraints on the robotic vehicles.

The application of formal methods to generate control laws
satisfying TL specifications has been studied extensively
for linear dynamical systems [1]–[4], including applications
to mobile robotic vehicles [5]–[8]. Research in this area
has largely focused on linear temporal logic (LTL) spec-
ifications [9]. State space partitioning is used for discrete
abstraction of the dynamical system. More recently, discrete
abstraction for nonlinear dynamical systems has been inves-
tigated [10], [11], including the application of randomized
sampling-based methods [12]–[14].

∗Aerospace Engineering Program, Worcester Polytechnic Institute,
Worcester, MA, USA. {zzhang, rvcowlagi}@wpi.edu
† Corresponding author.

The literature on multi-vehicle robotic teams subject to
LTL specifications falls into two broad categories. On the one
hand, global specifications for the entire team are assumed,
and centralized motion-planning algorithms for the team are
developed [2], [15]. On the other hand, separate specifi-
cations for individual vehicles in the team are assumed,
and distributed motion-planning algorithms for the team are
developed [16], [17]. Distributed algorithms for satisfying
global specifications are yet an open subject of research.

The proposed work falls into the former category. Specif-
ically, we seek to extend the important work [15] to include
nonholonomic kinematic constraints on the robotic vehicles.
A crucial assumption in [15] is that a discrete abstraction
of the vehicle dynamical model is readily available. This as-
sumption is valid for holonomic vehicles that can be modeled
as single or double integrators. However, for nonholonomic
vehicles, the generation of a finite state model of the vehicle’s
motion is non-trivial, and is addressed in this paper.

We make two simplifying assumptions for the proposed
algorithm development. The first assumption relates to tem-
poral synchronization of vehicle motion: here, exact traversal
times of vehicles are ignored. Instead, within the proposed
finite state model of vehicle motion, one state transition is
assumed to be carried out over one time-step. The justifi-
cation for this assumption is the need for temporal abstrac-
tion in motion-planning to reduce complexity. The second
assumption is related to the workspace partitioning used
for motion-planning (see Section II): mutiple vehicles are
allowed to be within the same region at the same time-step.
The justifications for this assumption are that (a) owing to
the preceding temporal abstraction, the duration of one time-
step may suffice to create a posteriori a sufficient temporal
gap in the presence of different vehicles in the same cell,
and (b) the size of cells is assumed to be significantly larger
than the dimensions of the vehicle, thereby allowing enough
room for more than one robot within a cell.

In this paper, we propose a centralized motion-planning
algorithm for a team of robotic vehicles subject to nonholo-
nomic kinematic constraints and global LTL specifications.
The problem formulation relies on workspace cell decompo-
sitions, where certain regions of interest in the robots’ shared
workspace are defined. The proposed algorithm involves
two graphs: first, the topological graph G arising from the
workspace cell decomposition, and second, a graph GR aris-
ing from vertex aggregation on G, such that each region of
interest is a vertex GR. The main technical innovation in the
proposed algorithm is the application of the method of lifted
graphs to determine feasibility of edge transitions in G and



GR. Briefly, this method allows the reachability properties
of the vehicle kinematic model to be associated with these
edge transitions. As in [15], a team transition system is first
established. Next, a product transition system is constructed
from this team transition system and the Büchi automaton
associated with the global LTL specifications. Runs of this
product transition system can be uniquely projected to paths
(for each vehicle) that are compatible with the nonholonomic
constraints and also ensure that the global LTL specifications
are satisfied.

The main contributions of this paper are as follows. Firstly,
we present an novel motion-planning method to enable a
team of nonholonomic robots to satisfy global LTL specifica-
tions. This method relies on vertex aggregation in the team’s
shared workspace, and on the new method of lifted graphs.
Secondly, the proposed motion-planning method relies on
workspace partitioning, instead of state-space partitioning.
Finally, we propose an incremental algorithm computing the
desired motion plan. The proposed approach promises better
scalability to higher-dimensional vehicle dynamical models.

The rest of this paper is organized as follows. We present
the mathematical problem formulation in Section II. The
idea of lifted graphs is discussed in Section III, whereas the
team and product transition systems, and the overall motion-
planningapproach are discussed in Section IV. We present
illustrative numerical simulation results in Section V. Finally,
we conclude the paper in Section VI with comments about
the future work.

II. PROBLEM FORMULATION

In this section, we introduce preliminary ideas involved in
the problem formulation. Each robotic vehicle in a team of
NV vehicles is modeled as follows.

Vehicle model: Let ξ = (x, y, ψ) ∈ D := R2 × S1

denote the vehicle state, namely, the position of the vehicle
center of mass and the direction of its velocity vector in a
prespecified Cartesian coordinate system. The vehicle state
evolves according to the differential equations

ẋ(t) = cosψ(t), ẏ(t) = sinψ(t), ψ̇(t) = u(t), (1)

where u is the control input. The set of admissible control
input values is the interval U :=

[
− 1
ρ ,

1
ρ

]
, with ρ > 0. For

every tf ∈ R+, let Utf be the set of all piecewise continuous
functions on [0, tf ] taking values in U . For any u ∈ Utf , and
ξ0 ∈ D, the state trajectory ξ(t; ξ0, u), t ∈ [0, tf ], obtained
by integrating (1) is called an admissible state trajectory.

Workspace cell decomposition: Let W ∈ R2 denote
a planar region where the robotic vehicles collaboratively
operate. Consider a cell decomposition, i.e. a partition of W
into convex subregions called cells. We denote by NC ∈ Z+

the number of cells, and by Ri ⊂ W the subregion associated
with the ith cell, for each i = 1, . . . , NC. We associate with
this partition a graph G := (V,E) such that each vertex
of G is uniquely associated with a cell, and each edge of G
is uniquely associated with a pair of geometrically adjacent
cells. We denote by cell(v) the element of {Ri}N

C

i=1 associated
with the vertex v ∈ V . A path v in G is a finite or infinite

sequence (v0, v1, . . .) of vertices, such that v0, vk ∈ V , and
(vk−1, vk) ∈ E, for each k ∈ N. The number of vertices in a
path is called its length. Note that, according to the preceding
definition, a path in G can contain cycles. We denote by LG
the collection of all paths in G.

Special cells called base locations and regions of interest
(ROI) are prespecified. The number of base locations is equal
to the number NV of robotic vehicles in the team, and each
robot is assumed to start from one of these locations. The
vertices in V associated with these cells are denoted by
vB,1, . . . , vB,NV . The number of ROIs is NR. Each ROI is a
connected union of cells, i.e. the kth ROI is ∪i∈ςkRi, where
ςk ⊆ {1, . . . , NC}, k = 1, . . . , NR are prespecified. The
associated vertices are denoted vR,`k, ` ∈ ςk.

For every tf ∈ R+ and u ∈ Utf , we define the G-trace of a
trajectory ξ (·; ξ0, u) as the path tr(ξ,G) = (j0, j1, . . .) ∈ LG
with minimum length such that x(ξ (0; ξ0, u)) ∈ cell(v0), and

x(ξ (t; ξ0, u)) ∈ ∪Pk=0cell(vk), t ∈ [0, tf ] , k ∈ N. (2)

We denote by LΓ(ξ0) ⊆ LG the collection of G-traces of
all admissible trajectories for every tf ∈ R+. Informally,
the path tr(ξ,G) is associated with the sequence of cells
that defines a “channel” in W , such that the curve x(ξ(t)),
t ∈ [0, tf ] , lies within this channel. The curve x(ξ(t)) and
the trajectory ξ(t) are said to traverse this channel of cells.

LTL−X specification: Linear temporal logic is a con-
venient formal language to express specifications on the
behavior of a system over time. Similar to [3], we use a
restricted version of LTL, namely, LTL−X , which does not
involve the next operator. The choice of LTL−X instead of
LTL is for algorithmic simplicity in the proposed work. A
brief overview of LTL−X is provided in Appendix I, and the
reader is referred to [3], [9] for further details.

We consider atomic propositions associated with each
ROI, namely λk ≡ x(ξ) ∈ ∪i∈ςkRi, for each k = 1, . . . , NR.

The set of all atomic propositions is denoted Λ = {λk}N
R

i=0.
Each path v = (v0, v1, . . .) ∈ LG defines a word w(v) =

(w0, w1, . . . , ), where

w` := {λk | cell(v`) ⊆ ∪i∈ςkRi} . (3)

The path v is said to satisfy a formula φ if the word w(v)
satisfies φ (as defined in Appendix I).

Satisfaction of global LTL−X specifications: Consider
paths vn ∈ LG , n = 1, . . . , NV, associated with the motion
of each vehicle in the team. Each of these paths defines a
word wn(vn) = (w0,n, w1,n, . . .), which we “concatenate”
to define a word for the entire team as follows

w(π) := (w0,1, w0,2, . . . , w1,1, w1,2, . . .), (4)

where π := (v1, . . . ,vNV). Here, the rule of “concatenation”
is that w`1,n1

appears before w`2,n2
in w(π) if `1 < `2 or

else if `1 = `2 and n1 < n2, for `1, `2 ∈ Z+ and n1, n2 ∈
{1, . . . , NV}. The n-tuple of paths π is said to collectively
satisfy a formula φ if w(π) satisfies φ. The main problem
of interest is then formulated as follows.



Fig. 1. An instance of Problem 1. Here, ROIs λ1 and λ2 are indicated
in red (cells 19 and 27, respectively), and ROIs λ3 and λ4 are indicated in
gray (cells 10–12 and 16–18, respectively).

Problem 1. Given a LTL−X formula φ over Λ, and vehicle
initial conditions ξ0,n ∈ D, for n = 1, . . . , NV, determine

LΓφ ⊆ LΓ(ξ0,1)× . . .× LΓ(ξ0,NV)

such that every NV-tuple of paths in LΓφ collectively satis-
fies the formula φ.

An instance of Problem 1 with two vehicles is illustrated
in Fig. 1, where four ROIs (gray and yellow) and two base
locations (green) are indicated. The given LTL specification
is (♦λ1)∧(♦λ2)∧(�¬λ3)∧(�¬λ4). This formula specifies
that the yellow-colored ROIs must be eventually visited (no
preference for the order of visit), and that the gray-colored
ROIs must be always avoided. Intuitively, the expected
motion plan will involve a vehicle from base B1 to visit
ROI λ1 and the second vehicle from base B2 to visit ROI λ2.
However, due to nonholonomic constraints, the sharp turns
required to execute this plan may be infeasible, and an
alternative plan is required.

III. FINITE STATE MODELS OF VEHICLE MOTION

For nonholonomic vehicle models, edge transitions in G
(i.e., transitions between successive cells) are vehicle-state-
dependent, especially when the cell dimensions are compa-
rable to vehicle maneuvering characteristics [18]. Therefore,
G does not suffice to serve as a finite state model of
vehicle motion, as required by the aforementioned discrete
abstraction step in motion-planning with LTL specifications.
This observation is a critical point of distinction of the
proposed work compared to, say, [15]. Therein, it is assumed
that there exist vehicle maneuvers to enable edge transitions
in a finite state system arising from workspace landmarks
(i.e. similar to the workspace cell decomposition graph G.)
To incorporate some information in G about the vehicles’
physical motion, we discuss the notion of a lifted graph,
which was introduced in [19] in the context of motion-
planning for nonholonomic vehicles.

A. Lifted Graph

Consider the workspace cell decomposition graph G =
(V,E), and for every integer H > 0, define

VH := {(v0, . . . , vH) : (vk−1, vk) ∈ E, k = 1, . . . ,H,

vk 6= vm, for k,m ∈ {0, . . . ,H}, with k 6= m} .

Every element i ∈ VH is an ordered (H + 1)-tuple of the
elements of V , and this tuple corresponds to a sequence
of successively adjacent cells. We denote by [i]k the kth

element of i, for k < m 6 H + 1. Let EH be a set
of all pairs (i, j), with i, j ∈ VH , such that [i]k = [j]k−1,
for every k = 2, . . . ,H + 1, and [i]1 6= [j]H+1. The lifted
graph GH is defined as the directed graph (VH , EH). Every
path v = (v0, v1, . . .) in the graph G can be uniquely
mapped to a path vh = (i0, i1, . . .) in GH , where ik =
(vk, vk+1, . . . , vk+H) ∈ VH for each k ∈ N. We refer to
the construction of GH from G as lifting of G.

B. Edge Transition Costs in GH
The primary benefit of lifting G is that edge transi-

tions costs in GH can encode characteristics of vehicles’
workspace traversal in accordance with its kinematic and
dynamic constraints. One example of such edge transition
costs is the following [20], which associates certain forward-
and backward reachability of the vehicle dynamical model
with edge transitions in GH

Consider an element (i, j) ∈ EH , with i, j ∈ VH .
Let S(i) ⊂ D be a set of states associated with i ∈ VH
such that x(S(i)) ⊆ cell([i]1) ∩ cell([i]2). Thus, the position
components of the elements in S(i) lie on the boundary
between the first and second cells corresponding to the
vertices of V that constitute the ordered H-tuple i. Next
let Q(j) ⊂ D be a set of states such that x(Q(j)) ⊆
cell([j]1) ∩ cell([j]2) and for every state ξq ∈ Q(j) there
exists a traversal time tq and an admissible control input
uq ∈ Utq such that x(ξ(t; ξq, uq)) ∈

⋃H+1
k=1 cell([j]k), for all

t ∈ [0, tq]. Informally, Q(j) is the set of all states whose
position components lie on the boundary between the first
and second cells of j, and such that the traversal of the
geometric region defined by the cells associated with the
tuple j is possible from any initial state within Q(J).

Next, let Ri : S(i)→ 2D be a reachability map associated
with the sets S(i), defined by

Ri(ξs) :=
{
ξt ∈ D | ξt ∈ ∪t∈R+

∪u∈Ut ξ(t; ξs, u), and

(∪τ∈[0,t]x(ξ(τ ; ξs, u))) ∩ (W\cell([i]2)) = ∅
}
, (5)

where ξs ∈ S(i) and 2D is the collection of all subsets of D.
Informally, Ri(ξs) is the set of all states that can be reached
from ξs by trajectories whose position components always
remain within the second cell of i. Finally, for (i, j) ∈ EH ,
define Ŝ(i, j) := {ξs ∈ S(i) : Ri(ξs) ∩Q(j) 6= ∅}.

Now consider a path v = {v0, v1, . . .} ∈ LG . For k ∈ N,
let ik := (vk, . . . , vk+H). Clearly, (ik, ik+1) ∈ EH . We
define gH : EH → R+ and S(·) as follows:

S(ik+1) :=
⋃

ξs∈Ŝ(ik,ik+1)

(Rik(ξs) ∩Q(ik+1)) , (6)

gH(ik, ik+1) :=

{
χ, if S(ik+1) = ∅,
1, otherwise, (7)

where χ � 1. The transition cost of (ik, ik+1) ∈ EH is
gH(ik, ik+1). Finally, the H-cost of a path v ∈ LG is:

JH(v) := H +

P−H∑
k=0

gH(ik, ik+1). (8)



Fig. 2. Conceptual relationship between the various graphs involved.

Algorithms for computing the sets R(·),S(·), and Q(·) are
described, based on geometric arguments, in [21].

The following observation is crucial for the proposed
motion-planning algorithm.

Proposition 1. Let v = (v0, . . . , vP ) be a path with length
less than χ in LG , and let ξ0 ∈ D be prespecified such that
x(ξ0) ∈ cell(v0) ∩ cell(v1). Then v ∈ LΓ(ξ0) if and only if
JH(v) < χ.

Proof. See Appendix II.

The lifted graph GH with the preceding edge transition
costs is a finite state model for an individual vehicle’s
motion. Proposition 1 characterizes the paths in G that can
be feasibly traversed while satisfying the vehicle’s kinematic
and dynamic constraints.

The motion of the entire team of vehicles can be modeled
by NV copies of GH . Specifically, the idea is to construct a
team transition system [15] through a Cartesian product-like
operation with NV copies of GH . Whereas this approach
is viable, it is wasteful when the number of ROI NR is
small compared to the number of cells NC. Instead, we
consider an undirected graph – henceforth referred to as
the ROI graph – GR = (V R, ER), which is constructed by
aggregating vertices in G. To this end, we introduce a map
ROI : 2V → V R that uniquely associates each vertex in V R

with either a ROI or a robot base, i.e. the total number of
vertices in V R is NR +NV. Precisely:

V R :=
⋃

k=1,...,NR

ROI({vR,`k}`∈ςk) ∪
⋃

k=1,...,NV

ROI(vB,k).

The edge set ER is defined to be complete, i.e. each vertex
in V R is adjacent to every other vertex in V R. Informally,
paths in GR “abstractly” denote vehicle routes to complete
the specified task (LTL formula). In a minor abuse of notation
we denote by ROI−1 the set association of every element
q ∈ V R with vertices in V, e.g., ROI−1(q) = {vR,`k}`∈ςk .

The finite state model of the vehicle team in the proposed
approach is intricately linked with the motion-planning algo-
rithm, which we discuss in the next Section. Informally, this
finite state model is obtained by lifting GR to construct GR

M

for M > 0 followed by a product-like operation with NV

copies of GR
M . Transition costs in GR

M are assigned by
computing optimal paths in GH . Figure 2 illustrates the
relationship between the various graphs discussed here.

IV. MULTI-VEHICLE MOTION-PLANNING

For H,M > 1, consider GR
M . According to the definition

of lifting in Section III-A, each edge transition in GR
M

corresponds to a sequence of M+2 locations (either ROIs or
base locations) in G. Accordingly, we can assign a transition
cost to this edge in GR

M based on a vehicle’s cost of traversal
between these M + 2 locations.

To this end, the team state µ = (q1, . . . ,qNV) ∈ (V R
M )N

V

is defined as the NV-tuple of vertices in V R
M indicating

the location of each vehicle. Specifically, the team state µ
indicates that the kth vehicle is at the location associated
with [qk]1 ∈ V R. We denote by QM the set of all team
states. A team state transition is the relation δR ⊆ (V R

M )2NV

defined by

(µ, γ) ∈ δR iff (qk, rk) ∈ ER
M , for each k = 1, . . . , NV,

where µ = (q1, . . . ,qNV) and γ = (r1, . . . , rNV). Note
that each (µ, γ) ∈ δR is associated with NV sequences
{([qk]1, . . . , [qk]M+1, [rk]M+2)} of vertices of V R, where
k = 1, . . . , NV. Let v∗k(µ, γ) ∈ LG denote a path with
minimal H-cost that passes through all of the vertices
ROI−1([qk]1), . . . , ROI−1([qk]M+1), ROI−1([rk]M+2)
in that order. Then we define the cost of the transition (µ, γ)

by
∑NV

k=1 JH (v∗k(µ, γ)) .
The computation of these transition costs is time-

consuming, but these computations can be preprocessed of-
fline, and therefore do not constitute a computational burden
on the proposed motion-planning algorithm.

Assuming that the initial location of the kth vehicle is the
kth base location, we can define a set Q0,M ⊂ (V R

M )N
V

of
initial team states as:

Q0,M := {µ ∈ QM | [qk]1 = ROI(vB,k), k = 1, . . . , NV}.

The triplet QM = (QM , Q0,M , δR) defines the team state
transition system, which is a finite state model of the motion
of the entire vehicle team.

Next, we turn to the satisfaction of the given LTL specifi-
cations. It is known [22], [23] that every LTL formula φ over
the alphabet Λ is associated with a Büchi automaton Bφ with
input alphabet 2Λ, such that the collection of accepting runs
of Bφ is exactly the collection of infinite strings over Λ that
satisfy φ. A Büchi automaton is a finite state machine that
accepts infinite input words. The acceptance condition of a
Büchi automaton involves a set of accepting states that must
be visited infinitely often during any run. Algorithms for
translating a LTL formula to the associated Büchi automaton
are available [23]–[25]. For the Büchi automaton Bφ, we
denote by S the set of states, by δBφ ⊆ S × 2Λ × S the
transition relation, and by S0, Sf ⊆ S, respectively, the sets
of initial and accepting states.

Next, we define a product transition system Tφ,M :=
(T, δTφ,M ) as the product of Q and Bφ as follows:

1) The set of states of Tφ,M is T := S × QM . For every
state θ ∈ T , we denote by θ|S and θ|QM , respectively,
the projection of θ on S and QM .

2) The transition relation of Tφ,M is δTφ,M ⊆ T × 2Λ × T
defined as the set of all triplets (θk, wk, θ`) such that

(θk|S , wk, θ`|S) ∈ δBφ , (θk|QM , θ`|QM ) ∈ δR, (9)

wk =
{
λi | θk|QM ⊆ (qR,1, . . . ,qR,NV)

}
. (10)



Here qR,n ∈ V R
M is an tuple that contains ROI({vR,`i}`∈ςi).

A run of Tφ,M is a sequence Θ = (θ0, θ1, . . . , ) such that
θk ∈ T for each k ∈ N, and (θk, wk, θk+1) ∈ δTφ,M , with wk
as defined in (10). We denote by Θ|S = (θ0|S , θ1|S , . . . , )
and Θ|QM = (θ0|QM , θ1|QM , . . . , ), respectively, the projec-
tions of Θ on S and QM . Note that Θ|QM corresponds to NV

paths in LG , i.e. one path for each vehicle in the team. The
kth path πk(Θ) ∈ LG is defined by the concatenation

πk(Θ) := (v∗k(θ0|QM , θ1|QM ),v∗k(θ1|QM , θ2|QM ), . . .)

Similar to [3], [15], we restrict attention to runs of Tφ,M
of a “prefix-suffix” form Θ = (Θp,Θs,Θs, . . . , ). Here, the
“suffix” run Θs = (θf , . . . , θf), which is repeated infinitely
often in Θ, is a finite sequence such that θf ∈ Sf ×QM . The
“prefix” run Θp = (θ0, . . . , θP ) is a finite sequence such that
θ0 ∈ S0 ×QM and (θP , wP , θf) ∈ δTφ,M .

Now we state the main result of this paper as follows.

Theorem 1. Let Θ = (Θp,Θs,Θs, . . . , ) be a run of Tφ,M .
If JH(πk(Θp)) < χ and JH(πk(Θs)) < χ, for each k =
1, . . . , NV, then

(π1(Θ), . . . , πNV(Θ)) ∈ LΓΦ.

Proof. See Appendix II.

Theorem 1 solves Problem 1 by characterizing the multi-
vehicle paths that are not only feasible for traversal by
the vehicles, but also satisfy the global LTL specification.
The search for such multi-vehicle paths can be performed,
in principle, by executing Dijkstra’s algorithm to find an
optimal run of the product transition system Tφ,M . However,
this approach can be computationally expensive. On the one
hand, if a large value of M is chosen, there may be a
significant computational delay before any result is found.
On the other hand, it is beneficial to choose large values of
M because the total cost of paths is a nonincreasing function
of M (similar to [26, Prop. 2]). To remedy this situation, we
propose an incremental approach for finding optimal plans
in Tφ,M , which iteratively increases the value of M .

The proposed algorithm is shown in pseudocode-form
Fig. 3. A fixed value of H > 1, with higher values of H
preferred. As a preprocessing step, we compute the optimal
paths v∗k(µ, γ) for all transitions (µ, γ) in δR, for various
values of M , and the H-costs of these paths are stored in a
lookup table.

The main algorithm is initialized with M = 0, and an op-
timal run in the product transition system Tφ,M is identified
using, say, Dijkstra’s algorithm. This run is projected to paths
for individual vehicles, and the H-costs of these paths are
calculated. By Prop. 1, these paths are feasible for traversal
by admissible vehicle trajectories iff their H-costs are less
than χ. If all the paths are found to be feasible, then their
total cost is recorded and a feasible solution to the overall
problem is now available. The algorithm then increments M ,
either to determine a first feasible solution, or to reduce the
cost of the last known feasible solution. This algorithm can
be terminated either when the first feasible solution is found,
or whenever a predetermined maximum execution time is

Incremental Multi-Vehicle Motion-planning

1: M := 0, choose H > 1
2: total cost := χNV

3: while true do
4: Find an optimal run Θ∗ of Tφ,M
5: all paths feasible := true
6: for k = 1, . . . , NV do
7: if JH(πk(Θ∗)) > χ then
8: all paths feasible := false
9: break;

10: if all paths feasible then
11: total cost := min

(
total cost,

∑NV

k=1 JH(πk(Θ∗))
)

12: M := M + 1

Fig. 3. Pseudocode description of the proposed incremental algorithm for
solving the multi robot task/path planning problem.

reached. It is easy to show that this algorithm is complete,
i.e., if M and H are large enough, then this algorithm
will find a feasible solution to the overall motion-planning
problem if it exists (see [26, Proposition 2] for the proof of
a similar statement).

V. ILLUSTRATIVE EXAMPLE AND DISCUSSION

Figure 4 illustrates the application of the proposed al-
gorithm to the sample problem introduced in Fig. 1. The
proposed motion-planning algorithm starts with M = 0, and
preprocessed information with H = 0. The product transition
system Tφ,0 is searched. The resulting paths for each vehicle
is shown in Fig. 4(a), and matches the intuitively expected
solution discussed in Section I. Since H = 0, no information
regarding the vehicle dynamical model is included.

The result of executing the proposed algorithm with
M = 0 and H = 3 is shown in Fig. 4(b). Here, the minimum
H-cost of any path between the base B1 and ROI λ1 (and
similarly, between base B2 and ROI λ2) is found to be
greater than χ. The solution illustrated in Fig. 4(b) indicates
that π2 = ∅ , and

π1 =(1, 2, 3, 4, 13, 14, 15, 24, 25, 26, 27, 26, 25, 24,

23, 22, 21, 20, 19).

These paths for the two vehicles satisfy the given spec-
ification of visiting ROIs 19 and 27, and avoiding the
gray-colored ROIs. However, the overall path π1 is still
infeasible for traversal due to the sharp change in di-
rection at ROI 27. The reason for this solution is that
M = 0, and only single edge transitions in the ROI
graph are encoded with H-costs of paths. In this case, with
H = 3, the segments (1, 2, 3, 4, 13, 14, 15, 24, 25, 26, 27)
and (27, 26, 25, 24, 23, 22, 21, 20, 19) of π1 each have H-
cost lower than χ, but their concatenation π1 does not.

The algorithm finds this infeasibility of traversal in Line 9
of the proposed algorithm, and proceeds to search for another
solution the the product transition system with M = 1. The
result is illustrated in Fig. 4(c), which indicates the paths for



the two vehicles as:

π1 = (1, 2, 3, 4, 13, 14, 15, 24, 25, 26, 27),

π2 = (9, 8, 7, 6, 15, 14, 13, 22, 21, 20, 19).

Both of these paths are feasible for traversal (i.e. the H-
cost of each path is less than χ), and together the global
specification is satisfied.

Figure 5 illustrates the result of application of the proposed
algorithm to a 4-vehicle problem. The LTL specifications are
similar to the previous problem.

Next, we address an issue that arises due to the simplifying
assumption related to temporal synchronization, as discussed
in Section I. Consider the workspace shown in Fig. 6(a),
where two base locations (green) and two ROIs to be visited
(red) are indicated. If the order of visit is irrelevant (e.g.
the LTL specification φ = (♦λ1) ∧ (♦λ2), then temporal
synchronization is not important. In this case, the projection
of a run of the product system to QM , namely, Θ|QM is

Θ|QM =
(

(vB,1, vB,2), (vR,1, vB,2), (vR,1, vR,2)
)
.

This result means that the paths (in the ROI graph) to be fol-
lowed by the two vehicles are, respectively, (vB,1, vR,1) and
(vB,2, vR,2) for the vehicles starting from base locations 1
and 2. These paths are illustrated in Fig. 6(b).

Now, consider the formula φ = ♦(λ2 ∧ (♦λ1)), which
specifies that λ2 be visited before λ1. In this case, the
projection of a run of the product system to QM results in

Θ|QM =
(

(vB,1, vB,2), (vB,1, vR,2), (vR,1, vR,2)
)
.

Because we have excluded temporal synchronization, the
paths for the individual vehicles in these two cases are the
same. However, it is clear from the two expressions for Θ|QM
that temporal information is encoded within the ROI graph
paths, and needs to additionally encoded with time-stamps
for temporal synchronization.

VI. CONCLUSIONS AND FUTURE WORK

We presented a multi-vehicle motion-planning algorithm
for satisfying global LTL specifications, such that the resul-
tant paths are traversable with admissible trajectories of the
vehicle dynamical model. The overall centralized planning
approach is an extension to recent results in the literature to
include vehicle kinematic and dynamic constraints in multi-
vehicle motion-planning with LTL specifications. The main
idea proposed was that of lifting graphs to associate with
edge transitions in lifted graphs information about traversal
with admissible vehicle trajectories. An incremental motion-
planning algorithm was proposed, and illustrative numerical
simulation results were presented. Future work includes
removing the previously discussed simplifying assumptions,
including temporal synchronization, and the extension to
LTL specifications involving the next operator.

(a) Result of searching the product transition system with
M = 0, H = 0.

(b) Result with M = 0, H = 3.

(c) Result with M = 1, H = 3.

Fig. 4. Solutions to the motivating example in Fig. 1. The yellow- and
blue-colored cells indicate, respectively, the paths planned for the first and
second vehicle (additional details are in Section V).

Fig. 5. Illustration of motion-planning for 4 vehicles. The LTL specification
is similar to that of the example in Fig. 1. Here, ROIs to be always avoided
are indicated in gray, and ROIs to be eventually visited are indicated in red
(order of visit is not relevant). The base locations are indicated in green,
and the paths found for each vehicle are indicated in yellow.



λ2λ1

B2B1

(a) Conceptual illustration of workspace.

(b) Illustration of numerical simulation result.

Fig. 6. Illustration of motion-planning when temporal synchronization is
important. The paths of the two vehicle are indicated with yellow- and
blue-colored cells.

REFERENCES

[1] P. Tabuada and G. J. Pappas, “Model checking LTL over controllable
linear systems is decidable,” in Hybrid Systems: Computation &
Control (O. Maler and A. Pnueli, eds.), LNCS 2623, pp. 498–513,
Berlin: Springer-Verlag, 2003.

[2] M. Kloetzer and C. Belta, “Temporal logic planning and control of
robotic swarms by hierarchical abstractions,” IEEE Transaction on
Robotics, vol. 23, no. 2, pp. 320–330, 2007.

[3] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, pp. 287–297, February 2008.

[4] Y. Yordanov, J. Tu̇mova, I. Černá, J. Barnat, and C. Belta, “Temporal
logic control of discrete-time piecewise affine systems,” IEEE Trans-
actions on Automatic Control, vol. 57, no. 6, pp. 1491–1505, 2012.

[5] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” IEEE Trans-
actions on Robotics, vol. 21, pp. 864 – 874, October 2005.

[6] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: A temporal logic approach,” in Proceedings of the
44th IEEE Conference on Decision and Control, (Seville, Spain),
pp. 4885 – 4890, 12 – 15 Dec. 2005.

[7] S. R. Lindemann, I. I. Hussein, and S. M. LaValle, “Real time
feedback control for non-holonomic mobile robots with obstacles,” in
Proceedings of the 45th IEEE Conference on Decision and Control,
(San Diego, CA, USA), pp. 2406–2411, December 2006.

[8] T. Wongpiromsarn, Formal Methods for Design and Verification of
Embedded Control Systems: Application to an Autonomous Vehicle.
PhD thesis, California Institute of Technology, 2010.

[9] V. S. Alagar and K. Periasamy, Specification of Software Systems.
London, UK: Springer-Verlag, 2nd ed., 2011.

[10] M. Mazo and P. Tabuada, “Symbolic approximate time-optimal con-
trol,” Systems & Control Letters, vol. 60, pp. 256–263, 2011.

[11] G. Reissig, “Computing abstractions of nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 56, no. 11, pp. 2583–2598,
2011.

[12] S. Karaman, R. Sanfelice, and E. Frazzoli, “Optimal control of mixed
logical dynamical systems with linear temporal logic specifications,”
in Proceedings of the 47th IEEE Conference on Decision and Control,
2008., (Cancun, Mexico), pp. 2117–2122, Dec 2008.

[13] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi, “Motion
planning with complex goals,” IEEE Robotics Automation Magazine,
vol. 18, pp. 55–64, 2011.

[14] P. Chaudhari, T. Wongpiromsarn, and E. Frazzoli, “Incremental
minimum-violation control synthesis for robots interacting with exter-
nal agents,” in Proceedings of the 2014 American Control Conference
(ACC), (Portland, OR, USA), June 4–6 2014.

[15] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” International Journal of Robotics Research, vol. 32, no. 8,
pp. 889–911, 2013.

[16] M. Guo and D. V. Dimarogonas, “Reconfiguration in motion-planning
of single- and multi-agent systems under infeasible local LTL speci-
fications.,” in Proceedings of the 52nd IEEE Conference on Decision
& Control, (Florence, Italy), December 2013.

[17] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration
under local LTL specifications,” International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[18] R. V. Cowlagi and P. Tsiotras, “Shortest distance problems in graphs
using history-dependent transition costs with application to kinody-
namic path planning,” in Proceedings of the 2009 American Control
Conference, (St. Louis, MO, USA), pp. 414 – 419, 9 – 12 Jun 2009.

[19] R. V. Cowlagi and P. Tsiotras, “Hierarchical motion planning with
dynamical feasibility guarantees for mobile robotic vehicles,” IEEE
Transactions on Robotics, vol. 28, no. 2, pp. 379 – 395, 2012.

[20] R. V. Cowlagi and D. N. Kordonowy, “Geometric abstractions of
vehicle dynamical models for intelligent autonomous motion,” in
Proceedings of the 2014 American Control Conference, (Portland,
OR.), pp. 4840–4845, June 4 – 6 2014.

[21] R. V. Cowlagi and P. Tsiotras, “Curvature-bounded traversability
analysis for motion planning of mobile robots,” IEEE Transactions
on Robotics, vol. 30, no. 4, pp. 1011–1019, 2014.

[22] P. Wolper, M. Vardi, and A. Sistla, “Resoning about infinite com-
putations,” in Proceedings of the 24th Symposium on Foundations of
Computer Science, (Tucson, AZ), pp. 185–194, 1983.

[23] P. Wolper, “Constructing automata from temporal logic formulas: A
tutorial,” in Formal Methods Performance Analysis: First EEF/Euro
Summer School on Trends in Computer Science, New York, NY:
Springer-Verlag, 2001.

[24] G. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[25] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
Proceedings of the 13th Conference on Computer Aided Verification
(CAV’ 01) (H. C. G. Berry and A. Finkel, eds.), vol. 2102 of Lecture
Notes in Computer Science, (New York), pp. 53–65, Springer-Verlag,
2001.

[26] Z. Zhang and R. V. Cowlagi, “Incremental path repair in hierarchi-
cal motion-planning with dynamic feasibility guarantees for mobile
robotic vehicles,” in European Control Conference ECC’15, (Linz,
Austria), July 15 – 17 2015. to appear.

APPENDIX I
LTL−X SEMANTICS

The LTL−X syntax involves operators ¬ (negation),
∨ (disjunction) and . (until). Let Λ = {λk}N

R

i=0, with
NR ∈ Z>0 be a prespecified set of atomic propositions.
A LTL−X formula over Λ is recursively defined as follows:

1) Every atomic proposition λk ∈ Λ is a LTL−X formula.
2) If φ1 and φ2 are LTL−X formulae, then ¬φ1, (φ1∨φ2),

and (φ1 . φ2) are also LTL−X formulae.
Let φ1 and φ2 be LTL−X formulae. The formula (φ1 . φ2)
means that φ2 eventually becomes true and φ1 remains true
until φ2 becomes true. The operators ∧ (conjunction),⇒ (im-
plication), ⇔ (equivalence) are defined as is standard in
propositional logic. The temporal operators ♦ (eventually),
and � (always) are defined as follows:

♦φ1 := (φ1 ∨ ¬φ1) . φ1, �φ1 := ¬(♦¬φ1).



A word ω = (w0, w1, . . . , wP ) is a sequence such that
wi ∈ 2Λ for each i = 0, . . . , P, where 2Λ denotes the power
set of Λ. For i, j ∈ Z>0, j > i, we denote by ωji the word
(wi, wi+1, . . . , wj). The satisfaction of a LTL−X formula φ
by the word ω is denoted by ω |= φ, and it is recursively
defined as follows:

1) ω |= λk if λk ∈ w0, and ω 6|= λk if λk 6∈ w0.
2) ω |= ¬φ if ω 6|= φ.
3) ω |= (φ1 ∨ φ2) if ω |= φ1 or ω |= φ2.
4) ω |= (φ1 . φ2) if there exists i > 0 such that ωPi |= φ2

and for every j < i, ωPj |= φ1.

APPENDIX II
TECHNICAL PROOFS

Proof of Prop. 1. Define ik := (vk, . . . , vk+H), for each
k ∈ {0, . . . , P − H}. First, suppose that JH(v) < χ. By
(7) and (8) it follows that, for each k ∈ {0, . . . , P −H},
gH(ik, ik+1) = 1, and that S(ik+1) is nonempty. By (6),
for every state ξs ∈ S(ik+1), there exists pre(ξs) ∈
Ŝ(ik, ik+1) ⊆ S(ik) such that ξs ∈ Rik(pre(ξs)).

In particular, S(iP−H) is nonempty, and, by Eqn. (6),
Q(iP−H) is nonempty. By definition, for any state ξP−H ∈
Q(iP−H), there exist tP−H ∈ R+ and a control input
uP−H ∈ UtP−H such that

x(ξ(t; ξP−H , uP−H)) ∈ ∪H+1
`=1 cell([iP−H ]`) (11)

Then we iteratively define ξk := pre(ξk+1) for each k =
P −H, . . . , 0. Note that ξk+1 ∈ Rik(ξk). By definition in
Eqn. (5), there exist tk ∈ R+ and uk ∈ Utk such that
ξ (t; ξk, uk) = ξk+1, and

x(ξ (t; ξk, uk)) ∈ cell([ik]2), t ∈ [0, tk] . (12)

Note that ξk ∈ S(ik), which implies that ξ0 ∈ S(i0) = ξ0.
Now define the concatenated trajectory

ξ∗(t) := ξ(t; ξk, uk), t ∈ [τk, τk+1] , (13)

where τ0 = 0 and τk+1 := τk + tk, k = 0, . . . , P −H.
By (11) and (12), it follows that v = tr(ξ∗,G), and, by
consequence, that v ∈ LΓ(ξ0).

To prove the converse, suppose that v ∈ LΓ(ξ0). By
definition, x(ξ (0; ξ0, u)) ∈ cell(v0) and x(ξ (tf ; ξ0, u)) ∈
cell(vP ). Define for each k ∈ {0, . . . , P −H},

τk := max
τk∈[0,tf ]

{τk : x(ξ (τk; ξ0, u)) ∈ cell([ik]1) ∩ cell([ik]2)} ,

ξs
k := ξ (τk; ξ0, u) , uk := u|[τk,τk+1].

The existence of τk is guaranteed by continuity of ξ and
by (2). It is easy to see that τ0 = 0, ξs

k = ξ0, and that for
each k ∈ {1, . . . , P −H}, ξs

k+1 ∈ Rik(ξs
k). By definition of

the sets Q(·), it is also clear that ξs
k+1 ∈ Q(ik+1). Therefore,

ξs
k+1 ∈ S(k + 1), and by Eqns. (6) and (7), gH(ik) = 1 for

each k ∈ {1, . . . , P −H}. It follows that JH(v) < χ.

Proof of Theorem 1. By Prop. 1,

πk(Θp) ∈ LΓ(ξ0,k), πk(Θs) ∈ LΓ(ξ0,k),

for each k = 1, . . . , NV, which implies that
πk(Θp,Θs,Θs, . . .) ∈ LΓ(ξ0). By (3), (9), and (10), the path
πk(Θ) ∈ LG defines the word w(πk) = (w0,k, w1,k, . . .),
and by the concatenation rule in (4), the overall word defined
is w(π) := (w0,1, w0,2, . . . , w1,1, w1,2, . . .), By definition
of Tφ,M , this word is accepted by the Büchi automaton Bφ,
which in turn implies (π1(Θ), . . . , πNV(Θ)) ∈ LΓΦ.


	Introduction
	Problem Formulation
	Finite State Models of Vehicle Motion
	Lifted Graph
	Edge Transition Costs in GH

	Multi-Vehicle Motion-planning
	Illustrative Example and Discussion
	Conclusions and Future Work
	References
	Appendix I: LTL-X Semantics
	Appendix II: Technical Proofs

