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Abstract— We present a new technique for the control of a
nonholonomic vehicle kinematic model subject to linear tempo-
ral logic (LTL) specifications. The proposed technique is based
on partitioning of the vehicle’s planar workspace into cells.
The main result of this paper is the precise characterization
of acceptable sequences of cells, which can be traversed by
admissible state trajectory of the vehicle model while satisfying
the given LTL specifications. The proposed approach does not
require complete controllability of the vehicle model in the
presence of workspace constraints, and no linearization of the
model is involved. The key technical innovation is the so-called
lifted graph. Edge transitions in the lifted graph are associated
with certain forward- and backward reachable sets of the
vehicle model. We discuss numerical methods to compute the
aforesaid forward- and backward reachable sets of the vehicle
model, and illustrate the proposed technique with numerical
simulation examples.

I. INTRODUCTION

Unmanned aerial and terrestrial vehicles are foreseen to
serve in many military and civilian applications in the
near future with a high degree of autonomy enabled by
motion-planning and control algorithms. Traditionally, such
algorithms have focused on point-to-point obstacle-free path
generation and tracking [1], or, in the absence of environ-
mental obstacles, on trajectory optimization [2], [3]. Recent
research has broadened the motion-planning problem to in-
clude constraints of satisfying a higher-level specification [4],
as described next.

Consider a vehicle designed to move in a known envi-
ronment – its workspace – containing obstacles. The vehicle
is assigned a specification in terms of a formula of linear
temporal logic (LTL). The motion of the vehicle is modeled
by a controlled nonlinear dynamical system Γ, and a trajec-
tory cost is defined by a functional over admissible control
inputs. The motion-planning problem is to find admissible
control inputs for this dynamical such that the resultant
vehicle motion satisfies the aforesaid specification and also
minimizes the trajectory cost.

The inclusion of task satisfaction constraints into the
motion-planning problem necessitates hierarchical separa-
tion to the meet high-level specifications and the low-level
control objectives. In turn, this separation necessitates the
development of new techniques to supplement traditional
geometric path-planning and trajectory optimization algo-
rithms. In particular, techniques related to the generation
of discrete abstractions of the dynamical system Γ have
been proposed [5], [6]. Loosely speaking, these techniques
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involve the generation of a finite state transition system G
such that the transition sequences of G are equivalent – via
appropriately defined equivalence relations – to admissible
state trajectories of Γ. Transition sequences of G can be
chosen to satisfy temporal logic constraints. By construction
of G, the existence of admissible state trajectories of Γ that
are equivalent to such transition sequences, and the existence
of the associated admissible control inputs, is guaranteed.
This guarantee is tantamount to “compatibility” between
hierarchically separated algorithms for satisfying high-level
specifications and low-level trajectory optimization.

Related Work: The idea of generating a discrete abstrac-
tion of a dynamical system Γ has been developed [5]–[10]
for synthesizing control laws that produce state trajectories
satisfying a given LTL specification. Specifically, a finite
state transition system G is created such that it “resem-
bles” the dynamical system in the sense of bisimulation,
simulation, or language equivalence [6]. The states in G
are associated with regions in the state space of Γ. Control
laws are designed to steer trajectories of Γ between these
regions and thereby emulate state transitions in G. The LTL
specification is represented by a Büchi automaton B [11],
[12]. Finally, a product automaton of B and G is searched:
any run of this product automaton can be projected to a path
in G, which in turn can be associated with control laws and
admissible state trajectories of Γ. These state trajectories are
guaranteed to satisfy the given LTL specification.

For continuous-time and discrete-time linear systems, a
well-studied method for constructing the discrete abstrac-
tion G relies on partitioning the state space into polytopes
[13]–[15]. Control laws are developed either to steer the state
trajectories between adjacent polytopes or to maintain the
state within a particular polytope.

A closely related approach, especially for applications
involving motion-planning for mobile robotic vehicles [8],
[9] relies on partitioning the output space of Γ into non-
overlapping convex regions called cells. A graph G is defined
such that each vertex of G uniquely corresponds to a cell,
and edges in G are defined according to geometric adjacency
of cells. Control laws are then determined to steer the output
trajectories between adjacent cells, and a discrete abstraction
of Γ is thereby constructed (see, for instance, [8] for further
details). However, this approach is not suitable for creating
discrete abstractions of nonholonomic vehicle dynamical
models. Consider, for example, the Dubins car, which models
a forward-moving vehicle with a minimum turn radius. In
this case, transitions to adjacent cells depend on the vehicle’s
initial state: it is in principle neither possible to construct



control laws that steer the vehicle between adjacent cells
from every initial state, nor can the absence of existence of
such control laws be established.

None of the results in the existing literature can be applied
to solve the problem of motion-planning for a nonholonomic
vehicle subject to temporal logic specifications. Discrete
abstractions of nonlinear dynamical systems (including those
with nonholonomic constraints) based on state-space dis-
cretization has been recently proposed [16], [17], but this
approach is computationally impractical1.

In this paper, we propose a computationally efficient
approach to motion-planning subject to temporal logic spec-
ifications for a nonholonomic vehicle model. The proposed
approach is based on workspace cell decomposition. The
key innovation is the so-called lifted graph (Section III),
which is the discrete mathematical structure used for cre-
ating a discrete abstraction of the vehicle model. Briefly,
edges in the lifted graph are associated with successions of
adjacent cells in the cell decomposition. The nonholonomic
constraint in the vehicle model imposes an upper bound on
the curvature of admissible workspace trajectories of the
vehicle. We analyze the traversability of successions of cells
by curvature-bounded workspace trajectories, which in turn
can be associated with some reachability properties of the
vehicle model. We show that for every edge of the lifted
graph, there exist admissible control inputs that enable the
vehicle to “traverse” this edge. Finally, we construct a finite
state automaton as the product of the lifted graph with the
Büchi automaton associated with the given LTL specification.
Every feasible run of this product automaton has a unique
projection on the collection of all paths of the lifted graph.

The contributions of this paper are as follows. Firstly, we
provide a new method to find state trajectories satisfying
LTL specifications for a nonholonomic vehicle model. The
existing approaches in this area either involve linearization
(followed by discrete abstraction of the linearized model) or
lead to abstractions with extremely large numbers of discrete
states. The proposed approach does not involve linearization.

Secondly, we provide a new method to develop discrete
abstractions of a nonlinear system based on output space
decompositions instead of state space decompositions, as is
often done in the literature. This approach is valuable in
general, for nonlinear systems beyond the model considered
in this paper, because the output space is typically of a
smaller dimension than the state space. For differentially flat
systems [18], [19], there exist algebraic mappings between
the output space trajectories and state space trajectories and
control inputs. Previous attempts at using output space de-
compositions [8] have either ignored control input constraints
or have imposed strong controllability assumptions [8], [20].

Finally, and in contrast to the existing literature [7], [8],
[14], [20], the proposed discrete abstraction does not rely on
feedback control. Stated differently, the proposed approach
does not use up control authority for the sake of creating a

1In the example illustrated [17], for example, a three state model results
in a discrete abstraction with 91,035 states and over 34 million transitions.

discrete abstraction of the vehicle model. Therefore, optimal
control laws can be designed for executing the vehicle’s
motion using the complete admissible control value set.

The rest of this paper is organized as follows. In Section II,
we precisely formulate the problem. In Section III, we dis-
cuss the lifted graph and a discrete abstraction of the vehicle
model. Edge transitions in the lifted graph are discussed in
context with the reachability properties of the vehicle model.
In Section IV, we discuss a product transition system that
enables the search for admissible trajectories satisfying the
given LTL specification. In Section V, we present illustrative
examples of implementation of the proposed approach, and
conclude the paper in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce the following elements of the
problem: the vehicle model, the workspace cell decomposi-
tion, and the LTL specification.

Vehicle model: Let ξ = (x, y, ψ) ∈ D := R2 × S1

denote the state of the vehicle, namely, the position of the
vehicle center of mass and the direction of its velocity
vector in a prespecified Cartesian coordinate system. For
convenience, we denote by x(ξ) the position coordinates
of any state ξ = (x, y, ψ) ∈ D, i.e., x(ξ) = (x, y).
We consider a vehicle kinematic model described by the
differential equations

ẋ(t) = cosψ(t), ẏ(t) = sinψ(t), ψ̇(t) = u(t), (1)

where u is the control input. We assume that the set of
admissible control input values is the closed interval U :=[
− 1
ρ ,

1
ρ

]
, where ρ > 0. For every tf ∈ R+, let

Utf := {u : [0, tf ]→ U | u piecewise continuous} ,

be the set of all admissible control inputs. For any u ∈ Utf ,
and initial state ξ0 ∈ D, the state trajectory ξ(t; ξ0, u),
t ∈ [0, tf ], obtained by integrating Eqn. (1) is called an
admissible state trajectory.

Workspace cell decomposition: Let W ∈ R2 denote a
planar region with obstacles. Consider a cell decomposition,
i.e. a partition of W into convex subregions called cells. We
denote by NC ∈ Z+ the number of cells, and by Ri ⊂
W the subregion associated with the ith cell, for each i =
1, . . . , NC. Therefore, ∪NC

i=1R
i =W . We associate with this

partition a graph G := (V,E) such that each vertex of G
is uniquely associated with an obstacle-free cell, and each
edge of G is uniquely associated with a pair of geometrically
adjacent cells. We denote by cell(j) the element of {Ri}NC

i=1

associated with the vertex j ∈ V . A path π in G is a finite or
infinite sequence (j0, j1, . . .) of vertices, such that j0, jk ∈
V , and (jk−1, jk) ∈ E, for each k ∈ N. The number of
vertices in a path is called its length. Note that, according to
the preceding definition, a path in G can contain cycles. We
denote by LG the collection of all paths in G.

For every tf ∈ R+ and u ∈ Utf , we define the G-trace of
the trajectory ξ (·; ξ0, u) as the path tr(ξ,G) = (j0, j1, . . .) ∈



LG of minimal length such that x(ξ (0; ξ0, u)) ∈ cell(j0), and

x(ξ (t; ξ0, u)) ∈ ∪Pk=0cell(jk), t ∈ [0, tf ] , k ∈ N. (2)

We denote by LΓ(ξ0) ⊆ LG the collection of G-traces of
all admissible trajectories for every tf ∈ R+. Informally,
the path tr(ξ,G) is associated with the sequence of cells
that defines a “channel” in W , such that the curve x(ξ(t)),
t ∈ [0, tf ] , lies within this channel. The curve x(ξ(t)) and
the trajectory ξ(t) are said to traverse this channel of cells.

LTL−X specification: Linear temporal logic is a con-
venient formal language to express specifications on the
behavior of a system over time. Similar to [14], we use a
restricted version of LTL, namely, LTL−X , which does not
involve the next operator. The choice of LTL−X instead of
LTL is for simplicity of exposition of the proposed work.
A brief overview of LTL−X is provided in Appendix I; the
reader is referred to [14], [21] for further details.

We assume a finite number of regions of interest in the
workspace W , and we label these regions by λ1, . . . , λ

R
N .

Each symbol λk is an atomic proposition defined by a set
membership relation in D of the form

λk ≡ x(ξ) ∈ ∪i∈ςkRi, for each k = 1, . . . , NR. (3)

where ςk ⊆ {1, . . . , NC} is prespecified for each
k = 1, . . . , NR. Each region of interest is assumed
to be a (possibly disconnected) union of cells. Each
path π = (j0, j1, . . .) ∈ LG defines a word ω(π) =
(w0, w1, . . . , ), where

w` :=
{
λk | cell(j`) ⊆ ∪i∈ςkRi

}
. (4)

The path π is said to satisfy a LTL−X formula φ if the
word ω(π) satisfies φ (as defined in Appendix I).

The main problem of interest in this paper is the following.

Problem 1. Given a LTL−X formula φ over Λ, and ξ0 ∈ D,
determine a collection of paths LΓφ ⊆ LΓ(ξ0) such that
every path in LΓφ satisfies the formula φ.

The “channel” of cells associated with every path in
the collection LΓφ can be traversed by an admissible state
trajectory. Furthermore, every path in LΓφ also satisfies
the specification φ. The collection LΓφ therefore represents,
loosely speaking, an equivalence class of admissible state tra-
jectories that satisfy the specification φ. In the context of the
“compatibility” in hierarchical motion-planning discussed in
Section I, the computation of LΓφ is desirable because every
high-level plan that belongs to LΓφ is guaranteed to be
“compatible” with vehicle dynamical constraints.

The computation of LΓφ is challenging because LΓ(ξ0) is
difficult to compute, and involves discrete abstraction of the
continuous system Γ. In [8], for instance, feedback control
laws are designed to construct a language equivalent discrete
abstraction, such that LΓ = LG . However, the underlying
assumption therein is that the vehicle model is completely
controllable in the presence of obstacles (workspace con-
straints). For the vehicle model considered in this paper, this
controllability assumption is not true [22].
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Fig. 1. Example of a lifted graph (all vertices of G1 are not shown).

To solve Problem 1 in the light of the preceding obser-
vations, we propose a new approach based on the so-called
lifted graph, which we discuss next.

III. LIFTED GRAPH

The proposed approach to the solution of Problem 1 relies
on traversability analysis and assignment of transition costs
to successions of edges in the graph G. This approach appears
in [22] for motion-planning subject to vehicle kinematic
and/or dynamic constraints. To fix ideas, for every integer
H > 0, let

VH := {(j0, . . . , jH) : (jk−1, jk) ∈ E, k = 1, . . . ,H,

jk 6= jm, for k,m ∈ {0, . . . ,H}, with k 6= m} .

Every element I of the set VH is an ordered (H+1)-tuple of
the elements of V , and this tuple corresponds to a sequence
of cells (see Fig. 2). We denote by [I]k the kth element of I ,
and by [I]mk the tuple

(
[I]k, [I]k+1, . . . , [I]m

)
, for k < m 6

H + 1. Let EH be a set of all pairs (I, J), with I, J ∈
VH , such that [I]k = [J ]k−1, for every k = 2, . . . ,H + 1,
and [I]1 6= [J ]H+1. An element of the set EH is called
an H-history. Each H-history is an ordered (H + 2)-tuple
of elements of V . According to this notation, V0 = V and
E0 = E. Note that the largest integer H̄ for which these
definitions remain meaningful is the diameter of the graph G,
i.e. H̄ = diam(G).

The lifted graph GH is defined as the directed graph whose
vertex and edge sets are, respectively, VH and EH . Figure 1
illustrates an example of a lifted graph for H = 1. Every path
π = (j0, j1, . . .) in the graph G can be uniquely mapped to a
path πH = (J0, J1, . . .) in the lifted graph GH , where Jk =
(jk, jk+1, . . . , jk+H) ∈ VH for each k ∈ N. We denote this
map by bH0 : LG → LGH , where LGH is the collection of
all paths in GH . Therefore, πH = bH0 (π) and π = b0H(πH).
For every integer H > 0, the map bH0 is bijective and bHH is
the identity map. For integers H,L > 0, we define bLH :=
bL0 ◦b0H . In general, bML ◦bLH ≡ bMH for integers H,L,M > 0.

A. Edge Transition Costs

We first characterize the collection LΓ. To this end, we
first define a transition cost function gH : EH → [0, χ], by
which we can compute costs of paths in the lifted graph GH .
Here, χ ∈ Z is sufficiently large with χ � diam(G). Then
we assert that a path π ∈ LG belongs to the collection LΓ(ξ0)
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Fig. 2. Illustration of a sequence of cells associated with I ∈ V4. In this
case, the underlying cell decomposition consists of square cells.

if and only if any subpath of bH0 (π) of length less than χ
has cost less than χ. To this end, we define the function gH
and then prove this assertion next.

Consider an element (I, J) ∈ EH , with I, J ∈ VH .
Let S(I) ⊂ D be a set of states associated with the element I
in VH such that x(S(I)) ⊆ cell([I]1) ∩ cell([I]2). Thus,
the position components of the elements in S(I) lie on the
boundary between the first and second cells corresponding
to the vertices of V that constitute the ordered H-tuple I .
Next let Q(J) ⊂ D be a set of states such that x(Q(J)) ⊆
cell([J ]1) ∩ cell([J ]2) and for every state ξq ∈ Q(J) there
exists a traversal time tq and an admissible control input
uq ∈ Utq such that x(ξ(t; ξq, uq)) ∈

⋃H+1
k=1 cell([J ]k), for all

t ∈ [0, tq]. Informally, Q(J) is the set of all states whose
position components lie on the boundary between the first
and second cells of J , and such that the traversal of the
geometric region defined by the cells associated with the
tuple J is possible from any initial state within Q(J). Sets
such as Q(·) are called backward reachability sets [23].

Next, let RI : S(I) → 2D be a reachability map
associated with the sets S(I), defined by

RI(ξs) :=
{
ξt ∈ D | ξt ∈ ∪t∈R+

∪u∈Ut ξ(t; ξs, u), and

(∪τ∈[0,t]x(ξ(τ ; ξs, u))) ∩ (W\cell([I]2)) = ∅
}
, (5)

where ξs ∈ S(I) and 2D is the collection of all subsets of D.
Informally, RI(ξs) is the set of all states that can be reached
from ξs by trajectories whose position components always
remain within the second cell of I . Finally, for (I, J) ∈ EH ,
define Ŝ(I, J) := {ξs ∈ S(I) : RI(ξs) ∩Q(J) 6= ∅}.

Now consider a path π = {j0, j1, . . .} ∈ LG . For each k ∈
N, let Ik := (jk, . . . , jk+H). Clearly, (Ik, Ik+1) ∈ EH . We
iteratively define gH and the set association S(·) as follows:

S(Ik+1) :=
⋃

ξs∈Ŝ(Ik,Ik+1)

(RIk(ξs) ∩Q(Ik+1)) , (6)

gH(Ik, Ik+1) :=

{
χ, if S(Ik+1) = ∅,
1, otherwise. (7)

The transition cost of any edge (Ik, Ik+1) ∈ EH is
gH(Ik, Ik+1). We define the H-cost of the path π ∈ LG as

JH(π) := H +

P−H∑
k=0

gH(Ik, Ik+1). (8)

Proposition 1. Let π = (j0, . . . , jP ) be a path with length
less than χ in LG , and let ξ0 ∈ D be prespecified such that

x(ξ0) ∈ cell(j0) ∩ cell(j1). Then π ∈ LΓ(ξ0) if and only if
JH(π) < χ.

Proof: Define Ik := (jk, . . . , jk+H), for each k ∈
{0, . . . , P−H}. First, suppose that JH(π) < χ. By Eqns. (7)
and (8), it follows that, for each k ∈ {0, . . . , P − H},
gH(Ik, Ik+1) = 1, and that S(Ik+1) is nonempty. By
Eqn. (6), for every state ξs ∈ S(Ik+1), there exists pre(ξs) ∈
Ŝ(Ik, Ik+1) ⊆ S(Ik) such that ξs ∈ RIk(pre(ξs)).

In particular, S(IP−H) is nonempty, and, by Eqn. (6),
Q(IP−H) is nonempty. By definition, for any state ξP−H ∈
Q(IP−H), there exist tP−H ∈ R+ and a control input
uP−H ∈ UtP−H such that

x(ξ(t; ξP−H , uP−H)) ∈ ∪H+1
`=1 cell([IP−H ]`) (9)

Then we iteratively define ξk := pre(ξk+1) for each k =
P −H, . . . , 0. Note that ξk+1 ∈ RIk(ξk). By definition in
Eqn. (5), there exist tk ∈ R+ and uk ∈ Utk such that
ξ (t; ξk, uk) = ξk+1, and

x(ξ (t; ξk, uk)) ∈ cell([Ik]2), t ∈ [0, tk] . (10)

Note that ξk ∈ S(Ik), which implies that ξ0 ∈ S(I0) = ξ0.
Now define the concatenated trajectory

ξ∗(t) := ξ(t; ξk, uk), t ∈ [τk, τk+1] , (11)

where τ0 = 0 and τk+1 := τk + tk, for each k =
0, . . . , P −H. By Eqns. (9) and (10), it follows that π =
tr(ξ∗,G), and, by consequence, that π ∈ LΓ(ξ0).

To prove the converse, suppose that π ∈ LΓ(ξ0). By
definition, x(ξ (0; ξ0, u)) ∈ cell(j0) and x(ξ (tf ; ξ0, u)) ∈
cell(jP ). Define for each k ∈ {0, . . . , P −H},

τk := max
τk∈[0,tf ]

{τk : x(ξ (τk; ξ0, u)) ∈ cell([Ik]1) ∩ cell([Ik]2)} ,

ξs
k := ξ (τk; ξ0, u) , uk := u|[τk,τk+1].

The existence of τk is guaranteed by continuity of ξ and
by (2). It is easy to see that τ0 = 0, ξs

k = ξ0, and that for
each k ∈ {1, . . . , P −H}, ξs

k+1 ∈ RIk(ξs
k). By definition of

the sets Q(·), it is also clear that ξs
k+1 ∈ Q(Ik+1). Therefore,

ξs
k+1 ∈ S(k + 1), and by Eqns. (6) and (7), gH(Ik) = 1 for

each k ∈ {1, . . . , P −H}. It follows that JH(π) < χ.
Proposition 1 asserts that the channel of cells associated

with any path in LG with length less than χ is traversable by
an admissible state trajectory of Γ if and only if the H-cost
of this path is less than χ. Equivalently, consider the graph
G̃H obtained by deleting from the lifted graph GH all edges
with transition costs greater than or equal to χ, per Eqns. (6)
and (7). Proposition 1 asserts that the graph G̃H is a discrete
abstraction of the system Γ.

IV. PRODUCT TRANSITION SYSTEM

A Büchi automaton is a finite state machine that accepts
infinite input words. Loosely speaking, the acceptance con-
dition of a Büchi automaton involves a set of accepting
states that must be visited infinitely often during any run.
It is known [24], [25] that every LTL formula φ over the
alphabet Λ is associated with a Büchi automaton Bφ with



input alphabet 2Λ, such that the collection of accepting runs
of Bφ is exactly the collection of infinite strings over Λ that
satisfy φ. Algorithms for translating a LTL formula to the
associated Büchi automaton are available [11], [12], [25].
The reader interested is referred to [21], [26] for further
details on finite state automata in general and Büchi automata
in particular.

For the Büchi automaton Bφ, we denote by S the set of
states, by δBφ ⊆ S × 2Λ × S the transition relation, and by
S0, Sf ⊆ S, respectively, the sets of initial and accepting
states. For an integer H > 1, we now define a product
transition system Tφ,H := (T, δTφ,H ) as follows:

1) The set of states of Tφ,H is T := S × VH . For every
state θ ∈ T , we denote by θ|S and θ|VH , respectively,
the projection of θ on S and VH .

2) The transition relation of Tφ,H is δTφ,H ⊆ T × 2Λ × T
defined as the set of all triplets (θk, wk, θ`) such that

(θk|S , wk, θ`|S) ∈ δBφ , (θk|VH , θ`|VH ) ∈ EH , (12)

wk =
{
λi | cell([θk|VH ]l) ⊆ ∪j∈ςiRj ,

for any ` = 1, . . . ,H + 1} (13)

A run of Tφ,H is a sequence Θ = (θ0, θ1, . . . , ) such that
θk ∈ T for each k ∈ N, and (θk, wk, θk+1) ∈ δTφ,H , with wk
as defined in (13). We denote by Θ|S = (θ0|S , θ1|S , . . . , )
and Θ|VH = (θ0|VH , θ1|VH , . . . , ), respectively, the projec-
tions of Θ on S and VH . Note that Θ|VH ∈ LGH , and
therefore b0H(Θ|VH ) ∈ LG .

Similar to the approach taken in [14], we restrict at-
tention to runs of Tφ,H of a “prefix-suffix” form Θ =
(Θp,Θs,Θs, . . . , ). Here, the “suffix” run Θs = (θf , . . . , θf),
which is repeated infinitely often in Θ, is a finite sequence
such that θf , θf ∈ Sf × VH . The “prefix” run Θp =
(θ0, . . . , θM ) is a finite sequence such that θ0 ∈ S0 × VH
and (θM , wM , θf) ∈ δTφ,H .

Now we state the main result of this paper as follows.

Theorem 1. Let Θ = (θ0, θ1, . . . , ) be a run of Tφ,H . If
JH(b0H(Θp|VH )) < χ and JH(b0H(Θs|VH )) < χ, then

b0H(Θ|VH ) ∈ LΓΦ.

Conversely, for every path π ∈ LΓΦ, there exists a run Θ of
Tφ,H , such that b0H(Θ|VH ) = π.

Proof: By Prop. 1,

b0H(Θp|VH ) ∈ LΓ(ξ0), b0H(Θs|VH ) ∈ LΓ(ξ0),

which implies that b0H((Θp,Θs,Θs, . . .)|VH ) ∈ LΓ(ξ0). By
(4), (12), and (13), the path π := b0H(Θ|VH ) ∈ LG defines
the word ω(π) = (w0, w1, . . .). By definition of Tφ,H ,
(θk, wk, θk+1) ∈ δTφ,H , and (θk|S , wk, θk+1|S) ∈ δBφ for
each k ∈ N. Therefore, the word ω(π) is accepted by
the Büchi automaton Bφ, which in turn means that the
path π satisfies the formula φ and, by consequence, π =
b0H(Θp|VH ) ∈ LΓΦ.

To prove the converse, consider a path π = (j0, j1, . . .) ∈
LΓφ ⊆ LΓ ⊆ LG . Because the path satisfies the formula φ,

the word ω(π) = (w0, w1, . . .), where wk is defined in
Eqn. (4), is accepted by the Büchi automaton Bφ. Let
s0, s1, . . . be the states of Bφ visited in the run associated
with the input word ω(π). Also, let Ik := (jk, . . . , jk+1) ∈
VH , and define θk := (sk, Ik) for each k ∈ N. Clearly,
(θk, wk, θk+1) ∈ δTφ,H , and it follows that Θ := (θ0, θ1, . . .)
is a run of Tφ,H , and that Θ|VH = bH0 (π), which implies that
b0H(Θ|VH ) = π.

A. Motion-planning Algorithm

Theorem 1 solves Problem 1 in that it precisely charac-
terizes the collection LΓφ. Recall that LΓφ is an equivalence
class of admissible state trajectories that satisfy the speci-
fication φ. Following Theorem 1, it is easy to determine a
specific plan for a given initial state ξ0 ∈ D and a given
LTL−X specification φ. To do so, we execute Dijkstra’s
algorithm to search for a prefix and suffix run of the
product transition system that satisfy the conditions given in
Theorem 1. A straightforward algorithm for finding a run of
a product automaton with minimum total number of vertices
in the concatenation of prefix and suffix runs appears in [14],
which we can appropriately modify for finding a run of Tφ,H .

The proposed approach results in a path in the workspace
cell decomposition, which may be considered a (discrete)
“route” for the vehicle. This path defines a channel through
the workspace. The existence of an admissible control input
for the vehicle model Γ is guaranteed; the actual computation
of such an input can be performed by a trajectory optimiza-
tion algorithm (e.g. [3]) which we do not consider in this
paper.

To search the product automaton, it is necessary to com-
pute the sets R(·) and S(·) discussed in Section III. The
forward reachability sets R(·) are relatively straightforward
to compute using, for example, the analysis described in
[27]. The main difficulty lies in the computation of the sets
and S(·) In the next section, we discuss the computation of
these sets for the specific case of rectangular workspace cell
decompositions.

V. NUMERICAL IMPLEMENTATION AND DISCUSSION

For the vehicle model discussed in Section II, the
workspace trajectories traced by admissible state trajectories
are continuously differentiable planar curves with curvature
at most 1

ρ . In this case, the sets S(·) can be numerically
computed using planar geometric arguments, which are dis-
cussed in detail in [28]. We present the relevant ideas and
terminology from [28] here for the sake of completeness.

A path between points P and Q in the plane is a differen-
tiable curve γ := {s 7→ (x(s), y(s)) ∈ R2 : 0 6 s 6 1} such
that P = (x(0), y(0)) and Q = (x(1), y(1)). We denote by
γ′ (W ) the angle of the tangent to γ at W = (x(s), y(s)),
for all s ∈ [0, 1], and by (W,α) the state in D specified by
W ∈ R2 and α ∈ S1.

Note from Eqn. (6) that the computation of the sets
S(·) requires the computation of the backward reachability
sets Q(·). When rectangular cell decompositions are used,
every vertex J ∈ VH is associated with a “channel” of
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rectangular cells, as shown in Fig. 2. To compute Q(J), we
must analyze the traversal of this channel with curvature-
bounded continuously differentiable curves, which we refer
to as curvature-bounded traversability analysis (CBTA).

Definition 1. Associated with the vertex J ∈ VH is a rect-
angular channel RH+1

J , which is a sequence of rectangular
cells {Rn}H+1

n=1 , with disjoint interiors, such that
1) Exactly one edge of Rn has a non-empty intersection with

exactly one edge of Rn+1 for each n ∈ {1, . . . ,H},
2) For all m,n ∈ {1, . . . ,H + 1}, the edges of Rn and Rm

do not intersect whenever m /∈ {n− 1, n, n+ 1}.

An example of such a rectangular channel is shown in
Fig. 2. In this context, consider the following CBTA problem.

Problem 2 (CBTA-R). Let W be a point on the segment
R1∩R2. Let α ∈ S1 and ρ ∈ R>0 be prespecified. Determine
if there exists a path γW,α such that:

1) γW,α(0) = W and γ′W,α (W ) = α,
2) The point X := γW,α(1) lies on the segment RH∩RH+1,
3) The path γW,α does not leave RH+1

J , i.e. (x(s), y(s)) ∈
∪H+1
n=1 Rn for every s ∈ [0, 1],

4) The curvature of γ at any point is at most ρ−1.

Clearly, the set Q(J) for any J ∈ VH is the collection
of all states (W,α) such that there exists a path γW,α as
previously described. Therefore, the solution of CBTA-R
is an important step in the computation of the set Q(J).
A numerical algorithm to solve CBTA-R problem can be
formulated using recursive CBTA of the individual rectangles
within the rectangular channel. To this end, consider a
rectangle ABCD with a Cartesian coordinate axes system
as shown in Fig. 3. Let the dimensions of the rectangle be d1

and d2, and let ρ ∈ R>0.

Definition 2. Let β(x), β(x), x ∈ [0, d2] be functions such
that −π2 6 β(x) 6 β(x) 6 π

2 . Let Y = (d1, y), Z = (d1, z)
be points on the segment BC with y 6 z. A path γ is called
a Type 1 path if

1) The endpoints of γ lie on the DA and Y Z,
2) The curvature at any point on γ is at most r−1,
3) All points of γ lie in the closed interior of ABCD, and
4) γ′ (X) ∈

[
β(x), β(x)

]
.

A Type 2 path is defined analogously for traversal across
adjacent edges (see Fig. 3 for illustrations of such paths).

CBTA-R can be solved by recursively solving the follow-
ing two problems defined on a single rectangle.

Problem 3 (CBTA-S1, resp. CBTA-S2). Find α, α such that
for every α ∈ [α, α], there exists a Type 1 path (respectively,
Type 2 path), γ with γ(0) = W and γ′ (W ) = α.

We attach a coordinate axes system to each rectangle of
RC consistent with the axes system used to define Type 1 and
Type 2 paths (see Figs. 2 and 3). For n = 1, . . . ,H + 1, we
denote by dn,1 and dn,2 the dimensions of each rectangle
along the x and y axes. We can identify rigid geometric
transformations (i.e. a sequence of rotations and reflections)
that align the entry and exit segments of rectangle Rn to
the segments AD and BC, respectively, for traversal across
parallel edges, or to the segments AD and DC, respectively,
for traversal across adjacent edges. Let %n denote the min-
imum number of reflections involved in the transformation
associated with the rectangle Rn. For n = 2, 3, . . . ,H , we
denote by Un and Vn (respectively, Yn and Zn), the endpoints
of the segments Rn−1 ∩Rn (respectively, Rn ∩Rn+1). We
denote the coordinates of the points Un, Vn, Yn, Zn, by the
corresponding lower case letters, i.e., Vn = (0, vn), etc.

For every point Xn = (xn, 0) (or Xn = (dn,1, xn), as
applicable) on the segment YnZn, we denote by β

n
(xn)

and βn(xn), respectively, the lower and upper bounds of
the allowable terminal tangent angles. Similarly, for every
point Wn = (0, wn) on the segment UnVn, we denote
by αn(wn) and αn(wn), respectively, the results of the
solution of CBTA-S1 (or CBTA-S2, as applicable). This
means that for every α ∈ [αn(wn), αn(wn)] , there exists
a curve γ such that γ(0) = Wn, Xn := γ(1) ∈ YnZn,

γ′ (Wn) = α, and γ′ (Xn) ∈
[
β
n
(xn), βn(xn)

]
. The angles

αn(·), αn(·), β
n
(·), and βn(·) are measured in the coordinate

axes attached to Rn. In this notation, the set Q(J) is

Q(J) := {(w2, 0, α2) : w2 ∈ [u2, v2] , α2 ∈ [α2(w2), α2(w2)]} .

The solution of CBTA-S1 and CBTA-S2 involves geomet-
ric constructions described in detail in [28], [29].

A. Illustrative Examples and Discussion

Figures 4 and 5 illustrate the application of the proposed
approach. In each example, a workspace cell decomposition
with uniformly-sized square cells was considered. The in-
dices assigned to these cells are not shown in Figures 4
and 5. Instead, for the reader’s convenience, different colors
are used to indicate associations with atomic propositions,
as in (3). In what follows, we use the notation of Section II.

In the context of Fig. 4, the number of atomic propositions
was set to K = 4. The cells associated with atomic
propositions λ1, λ2, λ3, and λ4, respectively, are indicated
with Fig. 4 in white (free space), gray (obstacles), red,
and yellow colors. The dark green cell in the lower left
corner is the cell containing x(ξ0). The sequence of light
green colored cells in Figure 4(a) indicate the prefix portion
of the path obtained as a result of searching the product
transition system described in Section IV, for the LTL−X



(a) Specification φ1 and ρ = 2.5
units.

(b) Specification φ2 and ρ = 1 unit. (c) Specification φ2 and ρ = 2.5
unit.

Fig. 4. Application of the proposed approach: illustration of the effects on
the resultant path of changes in the control input constraint. The numerical
values ρ are in dimensionless distance units, where 1 unit is equal to the
side of a cell in the uniform decomposition.

formula φ1 := �λ1∧�¬λ2∧♦λ3. For the result indicated in
Figure 4(a), the control input was assumed to be constrained
to the interval

[
− 1
ρ ,

1
ρ

]
, with ρ = 2.5 units. Here, the unit

of measuring ρ is the size of a cell in the (uniformly-sized)
cell decomposition. Informally, this specification requires the
vehicle to avoid the gray-colored regions, and visit the red-
colored region.

The sequences of light green colored cells in Fig. 4(b)
and Fig. 4(c) indicate the prefix portions of resultant paths
for the LTL−X formula φ2 := �λ1 ∧ �¬λ2 ∧ ♦λ3 ∧ ♦λ4.
Informally, this specification requires the vehicle to avoid
the gray-colored regions, and visit the red- and yellow-
colored regions both. The different results in Fig. 4(b) and
Fig. 4(c) are a consequence of imposing different control
input constraints. In particular, for the result indicated in
Fig. 4(b), we set ρ = 1 unit, whereas for the result indicated
in Fig. 4(c), we set ρ = 2.5 units. Notice that the same
LTL−X specification is satisfied by two markedly different
paths due to the different control input constraints.

In the context of Fig. 5, the number of atomic propositions
was set to K = 3. The cells associated with atomic
propositions λ1, λ2, and λ3, respectively, are indicated with
Fig. 5 in white, red, and yellow colors. The dark green cell
near the center is the cell containing x(ξ0). The sequence of
light green colored cells in each of Figs. 5(a)–5(f) indicate
the prefix portion of the path obtained as a result of searching
the product transition system, for the LTL−X formula φ3 :=
�λ1∧♦λ2∧♦λ3. Notice that the regions associated with the
propositions λ2 and λ3 (the red- and yellow-colored regions,
respectively) are unions of disconnected subregions. This
ability to associate disconnected regions with a single atomic
proposition is convenient because it affords the use of fewer

(a) ξ0 = (1.5, 4, π/2) units, ρ = 2
units.

(b) ξ0 = (2, 3.5, 0) units, ρ = 2
units.

(c) ξ0 = (3.5, 3, π/2) units, ρ = 2
units.

(d) ξ0 = (3, 2.5, π) units, ρ = 3.5
units.

(e) ξ0 = (3, 2.5, π) units, ρ = 1.5
units.

(f) ξ0 = (3, 2.5, π) units, ρ = 1
unit.

Fig. 5. Application of the proposed approach: illustration of the effects
on the resultant path of changes in the initial state. Here, the LTL−X

specification is φ3 (described in text). The numerical values of position
coordinates and of ρ are in dimensionless distance units, where 1 unit is
equal to the side of a cell in the uniform decomposition.

atomic propositions. Furthermore, this ability is not available
in other approaches reported in the literature, e.g. [14], which
depend on partitioning the vehicle’s state space instead of
its workspace (output space). The different resultant paths in
each of Figs. 5(a)–5(f) are due to different initial states, as
indicated in the captions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed a new technique for the con-
trol with LTL−X specifications of a nonholonomic vehicle
model. The proposed technique relies on workspace cell
decompositions, which involve partitioning in a space of
smaller dimension than the state space, as is often done in the
literature. The proposed technique involved discrete abstrac-
tion of the vehicle kinematic model using the so-called lifted
graph, and by apropriately assigning edge transition costs in
the lifted graph. The relationship of these edge transition
costs with certain forward- and backward reachable sets of
the vehicle model was discussed.

The proposed approach is applicable more generally to
differentially flat nonlinear systems, especially when control



input constraints can be mapped to constraints on the flat
output-space trajectories. The control constraints for the
vehicle model considered in this paper were mapped to
curvature constraints on the admissible workspace (output
space) trajectories. Therefore, analysis of forward- and
backward reachable sets with curvature-bounded curves was
directly applied for finding lifted graph edge transition costs
for this vehicle model. Future work includes the application
of the proposed approach for control with temporal logic
specifications of other differentially flat nonlinear systems.
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APPENDIX I
LTL−X SEMANTICS

The LTL−X syntax involves operators ¬ (negation),
∨ (disjunction) and . (until). Let Λ = {λk}N

R

i=0, with
NR ∈ Z>0 be a prespecified set of atomic propositions.
A LTL−X formula over Λ is recursively defined as follows:

1) Every atomic proposition λk ∈ Λ is a LTL−X formula.
2) If φ1 and φ2 are LTL−X formulae, then ¬φ1, (φ1∨φ2),

and (φ1 . φ2) are also LTL−X formulae.
Let φ1 and φ2 be LTL−X formulae. The formula (φ1 . φ2)
means that φ2 eventually becomes true and φ1 remains true
until φ2 becomes true. The operators ∧ (conjunction),⇒ (im-
plication), ⇔ (equivalence) are defined as is standard in
propositional logic. The temporal operators ♦ (eventually),
and � (always) are defined as follows:

♦φ1 := (φ1 ∨ ¬φ1) . φ1, �φ1 := ¬(♦¬φ1).

A word ω = (w0, w1, . . . , wP ) is a sequence such that
wi ∈ 2Λ for each i = 0, . . . , P, where 2Λ denotes the power
set of Λ. For i, j ∈ Z>0, j > i, we denote by ωji the word
(wi, wi+1, . . . , wj). The satisfaction of a LTL−X formula φ
by the word ω is denoted by ω |= φ, and it is recursively
defined as follows:

1) ω |= λk if λk ∈ w0, and ω 6|= λk if λk 6∈ w0.
2) ω |= ¬φ if ω 6|= φ.
3) ω |= (φ1 ∨ φ2) if ω |= φ1 or ω |= φ2.
4) ω |= (φ1 . φ2) if there exists i > 0 such that ωPi |= φ2

and for every j < i, ωPj |= φ1.
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