
Incremental Path Repair in Hierarchical Motion-Planning with
Dynamical Feasibility Guarantees for Mobile Robotic Vehicles

Zetian Zhang⇤ and Raghvendra V. Cowlagi⇤

Abstract— New requirements of autonomous mobile vehicles
necessitate hierarchical motion-planning techniques that not
only find a plan to satisfy high-level specifications, but also
guarantee that this plan is suitable for execution under vehicle
dynamical constraints. In this context, the H-cost motion-
planning technique has been reported in the recent literature.
We propose an incremental motion-planning algorithm based
on this technique. The proposed algorithm retains the benefits
of the original technique, and also significantly reduces the
associated computational cost. In particular, the proposed
iterative algorithm presents during intermediate iterations
feasible motion-planning solutions, with the guarantee that
the algorithm eventually converges to an optimal solution.
Furthermore, the costs of solutions at intermediate iterations
are nonincreasing except, possibly, at a finite number of special
iterations. Therefore, the proposed algorithm is suitable for
real-time implementations, where hard bounds on the available
computation time may be imposed, and where the original
H-cost optimization algorithm may not have sufficient time
to converge to any solution at all. We illustrate the proposed
algorithm with numerical simulation examples.

I. INTRODUCTION

The capability of autonomous motion envisioned for mo-
bile robotic vehicles has evolved from the traditional idea of
point-to-point motion (e.g. “go from A to B”) to the more
general idea of a completing a task [1]. Such a task (e.g.
“monitor region A until events B or C occur, then go to
regions D or E . . . ”) is typically specified using formulae of
predicate- or temporal logic.

In this context, the scope of motion-planning problem for
autonomous mobile vehicles has expanded beyond that of
the traditional constrained trajectory optimization problem.
Specifically, the motion-planning problem consists of two
distinct parts: (1) the task-planning problem of finding a
finite sequence of actions – namely, a plan – to complete
the assigned task, and (2) the trajectory generation problem
of finding a vehicle trajectory to execute this plan. The task-
planning problem is formulated as a combinatorial optimiza-
tion problem, e.g. path optimization in a graph. The trajectory
generation problem is formulated as a problem of finding
optimal control inputs for a dynamical system � that models
the vehicle’s motion.

The task-planning and trajectory generation parts of the
motion-planning problem are formulated on fundamentally
different domains, and it is therefore beneficial to hierar-
chically separate the solutions of these two parts, cf. [2]–
[9]. In such hierarchically separated solutions, task-planning
is achieved, for example, using geometric methods such as

⇤Aerospace Engineering Program, Worcester Polytechnic Institute,
Worcester, MA, USA. {zzhang, rvcowlagi}@wpi.edu

workspace cell decomposition [10]. Briefly, workspace cell
decomposition involves partitioning of the vehicle’s 2D or
3D workspace into convex regions called cells. Each cell is
either completely filled with obstacles or freely traversable
by the vehicle. A graph is constructed by associated each
traversable cell with a unique vertex of this graph, and by
defining edges based on geometric adjacency of cells.

Hierarchical separation in motion-planning entails the
need to maintain “compatibility” between the task-planning
and trajectory generation algorithms. To this end, the H-cost
motion-planning technique has been recently reported [11].
This technique is based on workspace cell decompositions,
and the central idea is to incorporate characteristics of the
vehicle’s physical motion capabilities into the high-level
planner via transition costs assigned to successions of edges
in the graph associated with workspace cell decomposition.
The H-cost technique involves path optimization on a so-
called lifted graph (see Section II). The vehicle models
considered in [11] include the Dubins car model, a parti-
cle dynamical model with acceleration constraints, and an
aircraft dynamical model.

The H-cost motion-planning technique closely aligns
with the recently developed idea of using discrete abstrac-
tions [12], [13] of vehicle dynamical system models in hierar-
chical motion-planning [14]–[18]. Informally, an abstraction
results in a finite state transition system G, which represents
the evolution of the dynamical system � that models the
vehicle’s physical motion. In [14], [15], this state transition
system is constructed as follows: the workspace is parti-
tioned, and a graph is constructed to represent the motion
of the state of � over the subregions of this partition via
admissible state trajectories. In [16]–[18], a similar approach
is followed, except that the state space is partitioned. The
high-level task is specified by an LTL formula �, and another
state-transition system, so-called a Büchi automaton, is con-
structed. Informally, the Büchi automaton admits only those
transitions that satisfy �. Finally, the state transition system G
for the overall motion-planning problem is constructed as
the product of the aforesaid graph (based on partitioning)
and the Büchi automaton. Consequently, any high-level plan
found by searching G is guaranteed to be “compatible”
with the vehicle dynamical system model, in that there are
guaranteed (by construction) to exist vehicle trajectories that
can execute the high-level plan. In the context of the H-
cost technique, future motion-planning algorithms involving
product transition systems of a Büchi automaton with the
lifted graph can be envisioned.

Computational inefficiency is a serious concern in current

hierarchical motion-planning approaches that make explicit
guarantees of “compatibility” between the task-planning and
trajectory generation algorithms. For example, the size of
the product automaton in [16]–[18] increases combinatorially
with the LTL alphabet involved in �. In the H-cost tech-
nique, the size of the lifted graph increases exponentially
with a main parameter of the technique. Improvements in
the computational efficiency of the abstraction-based ap-
proach [16]–[18] have been recently achieved via receding
horizon ideas [19], [20]. Nevertheless, these methods are
restrictive in the sense that they are based on the construction
of control laws that do not include notions of trajectory costs
for �. Also, abstractions as defined in [14], [16] may not exist
for vehicles with nonholonomic constraints.

In this paper, we propose the idea of incremental H-cost
motion-planning. The proposed algorithm retains the primary
benefit of the original H-cost technique [11] of finding an
optimal high-level plan with the guarantee that there exists
a state trajectory of � to execute this plan. Additionally, the
proposed algorithm significantly mitigates the computational
cost of the original H-cost approach by introducing incre-
mental computations. The proposed algorithm is incremental
in that it produces a sequence of feasible plans in intermedi-
ate iterations, which asymptotically converge to an optimal
plan. Therefore, the proposed algorithm is eventually opti-
mal, and it is also suitable for real-time implementation with
a hard bound on the available computation time. The primary
motivation behind developing an incremental algorithm is as
follows: the fundamental computational complexity in the H-
cost technique (or any similar hierarchical motion-planning
technique) cannot be defeated if the objective is solely to
find an optimal motion plan. In the interests of real-time
implementation, it is beneficial to develop a motion planner
that returns a feasible solution at nearly any time during its
search for an optimal motion plan.

The proposed algorithm relies on iterative repair of paths
in lifted graphs. We focus on the point-to-point motion-
planning problem for developing the algorithm; as previously
stated, it is easy to envision extensions to the general problem
where the high-level task is specified by logic formulae.
The H-cost algorithm [11] attempts to find optimal paths in
lifted graphs with appropriately defined edge costs. Whereas
the search for such optimal paths is inherently difficult, the
proposed approach alleviates this difficulty by iteratively
“seeding” the search with the result of a simpler optimization
problem, and then replacing high-cost edges in the “seed”
path. This idea of path repair has been discussed in different
contexts in [21], [22].

The contributions of this paper are as follows. Firstly,
we propose a novel, computationally efficient, and hierarchi-
cally separated solution to the point-to-point motion-planning
problem. The proposed approach can incorporate complex
vehicle dynamical characteristics, and it guarantees “compat-
ibility” between the ask-planning and trajectory generation
algorithms. Furthermore, the proposed approach possesses
the desirable property of maintaining feasible solutions in
intermediate iterations while asymptotically converging to

(a) Cell decomposition with square
cells.

[I]1 [I]2

[I]3 [I]4 [J]4

(b) A sequence of cells associated
with (I, J) 2 E3. Here [I]2 = [J]1,
[I]3 = [J]2, and [I]4 = [J]3.

Fig. 1. Cell decomposition and the geometric association of H-histories.

an optimal solution. Secondly, we elucidate the properties
of lifted graphs as a general tool for hierarchical motion-
planning involving different task-planning problems and ve-
hicle dynamics. Finally, we discuss the suitability of the
proposed approach to future real-time computations with
bounds on the computation time. Specifically, the proposed
approach can be implemented to use as much computational
time as available, instead of requiring a significant minimum
period for arriving at a usable result.

The rest of this paper is organized as follows. In Section II,
we briefly review the H-cost motion-planning algorithm,
including the idea of lifted graphs. In Section III, we present
the proposed incremental H-cost algorithm and the main
result of the paper. In Section IV, we present examples that
illustrate the benefits of the proposed algorithm. We conclude
the paper in Section V with comments on future work.

II. PROBLEM FORMULATION

The H-cost motion-planning technique is based on
workspace cell decomposition, i.e. a partition of the
workspace into convex subregions called cells, such that
each cell is either full of obstacles or freely traversable. To
precisely state the motion-planning in this context, let W
denote a planar region (namely, the workspace) with ob-
stacles in which the vehicle moves, and consider a cell
decomposition of this region. Following the notation and
terminology in [11], we associate with this partition a
graph G := (V,E) such that each vertex of G is uniquely
associated with an obstacle-free cell, and each edge of G
is uniquely associated with a pair of geometrically adjacent
cells. We denote by cell(v) the subregion of W associated
with the vertex v 2 V .

A path ⇡ in G is a finite sequence (j0, j1, . . . , jP) of
vertices with no repetition such that j0, jk 2 V , and
(jk�1, jk) 2 E, for each k = 1, . . . , P . In general, a
task-planning problem can be formulated as the problem of
finding a path in G that satisfies certain criteria. In particular,
the point-to-point motion-planning problem, at the higher
level of planning, is the problem of finding a path in the
graph G with minimum cost and with prespecified initial and
final vertices. We denote by L⇤ the set of all paths in the
graph G, and by L⇤(j0, jP) the set of all paths with initial

vertex j0 2 V and final vertex jP 2 V . The cost J0 : L⇤ !
R+ of a path is defined by J0(⇡) :=

PP
k=1 g0(jk�1, jk),

where g0 : E ! R+ is a prespecified edge cost function.
We refer to this problem, which has been well studied in
the literature (for instance, [23]), as the standard optimal
path problem. The problem can be solved, for instance, by
Dijkstra’s algorithm.

To introduce H-costs, for every integer H > 0, let

VH := {(j0, . . . , jH) : (jk�1, jk) 2 E, k = 1, . . . , H,

jk 6= jm, for k,m 2 {0, . . . , H}, with k 6= m} .

Every element I of the set VH is an ordered (H + 1)-
tuple of the elements of V , and this tuple corresponds
to a sequence of cells (see Fig. 1). Following [11], we
denote by [I]k the kth element of I , and by [I]mk the tuple�
[I]k, [I]k+1, . . . , [I]m

�
, for k < m 6 H+1. Let EH be a set

of all pairs (I, J), with I, J 2 VH , such that [I]k = [J]k�1,
for every k = 2, . . . , H +1, and [I]1 6= [J]H+1. An element
of the set EH is called an H-history. Note that each H-
history is an ordered (H +2)-tuple of elements of V , i.e., a
succession of (H + 1) edges in the graph G. According to
this notation, V0 = V and E0 = E. Also note that the largest
integer H̄ for which these definitions remain meaningful is
the diameter of the graph G, i.e. H̄ = diam(G). The diameter
of a graph is the largest distance (in terms of number of edges
in the path with the least number of edges) between any two
vertices in the graph.

Let gH : EH ! R+ be a non-negative function.

Definition 1. The H-cost of a path ⇡ in G is defined by

JH(⇡) := H +
PX

k=H+1

gH (jk�H�1, jk�H , . . . , jk) . (1)

For every H > P , we define JH(⇡) = JP�1(⇡). In [11],
the point-to-point motion-planning problem is formulated
as that of finding a path in G with minimum H-cost and
with prespecified initial and final vertices. We refer to this
problem as the H-cost optimal path problem. Suitable defi-
nitions of gH are crucial for the application this optimization
problem in motion-planning, which we will discuss later.

A. Vehicle Model

As in [11], let (x, y, ✓) 2 C := R2 ⇥ S1 denote the
configuration (i.e. the position of the vehicle center of mass
and the direction of its velocity vector) of the vehicle in a
prespecified Cartesian coordinate system, and let denote
any additional state variables required to describe the state
of the vehicle. The vehicle model is a controlled nonlinear
dynamical system, which we denote by �. We assume that
 2 , where is a n-dimensional smooth manifold. The
state of the system � is ⇠ := (x, y, ✓,) 2 D := C ⇥ .

Let U 2 Rm denote the set of admissible control values,
and for t > 0, let U[t1,t2] denote the set of piecewise
continuous functions defined on the interval [t1, t2] that take
values in U . The evolution of the system � is described
by the differential equation ⇠̇(t) = f(⇠(t), u(t)) for all

1 2 3

4 5 6

7 8 9

(a) Original
graph G.

(1, 2) (2, 3)

(3, 6)

(6, 9)

(2, 5)
(1, 4)

(4, 7)

(7, 8)
(8, 9)

(5, 8)

(4, 5) (5, 6)

(b) Lifted graph G1.

Fig. 2. Example of a lifted graph (all vertices of G1 are not shown).

t > [0, tf], where u 2 U[0,tf] is an admissible control input,
and f is sufficiently smooth to guarantee global existence
and uniqueness of solutions. We denote by ⇠(· ; ⇠0, u) the
unique state trajectory with initial condition ⇠(0) = ⇠0, and
by x(⇠) the projection on R2 of a state ⇠ 2 D.

B. Lifted Graph
The lifted graph GH , as defined in [11], is a directed graph

whose vertex and edge sets are, respectively, VH and EH

(Fig. 2 shows an example of a lifted graph with H = 1). Note
that the definition of the lifted graph GH is meaningful only
with reference to the original graph G, and also that G0 = G.

Every path ⇡0 = (j0, . . . , jP) in the original graph G0

can be uniquely mapped to a path ⇡H = (JH , . . . , JP) in
the lifted graph GH , where Jk := (jk�H , . . . , jk) 2 VH for
each k = H, . . . , P . We denote this map by bH0 : L⇤

0 !
L⇤
H , where L⇤

H is the set of all paths in GH . Therefore,
⇡H = bH0 (⇡0) and ⇡0 = b0H(⇡H). For every integer H > 0,
the map bH0 is bijective and bHH is the identity map. For
integers H,L > 0, we define bLH := bL0 � b0H . In general,
the following property is true for integers H,L,M > 0:
bML � bLH ⌘ bMH .

It is easy to show that the H-cost optimal path problem is
equivalent to a standard optimal path problem in the lifted
graph GH . To this end, define for k 2 {H + 1, . . . , P}:

g̃H(Jk�1, Jk) :=

⇢
gH(jk�H�1, . . . , jk), k < P,
gH(jk�H�1, . . . , jk) +H, k = P.

Then
P

k g̃H(Jk�1, Jk) = H +
P

kgH(jk�H�1, . . . , jk) =
JH(⇡), where k 2 {H + 1, . . . , P}. The minimization ofP

k g̃H(Jk�1, Jk) is a standard optimal path problem in the
lifted graph GH .

C. Assignment of Transition Costs to Histories
We seek to assign transition costs on histories, i.e. values

taken by the function gH , such that some of the main
aspects of the vehicle’s motion capability (e.g. turn rate
limits) influence the higher-level planning problem. Stated
differently, the result of the higher-level task planner is a
path ⇡0 = {j0, . . . , jP } in the graph G0, and we seek to
assign transition costs to histories such that for any path in G0

with finite H-cost, there exists an admissible control u 2
U[0,tf] and tf 2 R+ such that, for a given initial state ⇠0 2 D,

x(⇠ (t; ⇠0, u)) 2 [Pk=0cell(jk), t 2 [0, tf] . (2)

Equation (2) is a precise expression of the notion of “com-
patibility” between the higher- and lower levels in the
proposed hierarchical motion-planning technique. Either of
the following two approaches can be two adopted to assign
transition costs to histories:
1) Assignments such that gH and g̃h take values in the binary

set {1,�}: the transition cost quantifies whether or not a
history is feasible for traversal. Here � 2 R+ is chosen
sufficiently large, and a path with H-cost greater than �
is considered infeasible for traversal. We refer to such a
transition cost function as coarse.

2) Assignments such that gH and g̃H take values in R+: the
transition cost provides a finer-grained merit of “good-
ness” of a history. We refer to such a transition cost
function as refined. An example of such a cost function
appears in [11], where a local trajectory optimization
procedure finds specific vehicle trajectories that traverse
the cells associated with a history. The cost of the history
is assigned equal to the cost of this local trajectory.

An example of a coarse transition cost function is available
in [24], which we present here for the sake of completion.
Consider vertices I, J 2 VH such that (I, J) 2 EH . We
denote by S(I) ⇢ D a set of states of the system � associated
with I 2 VH , such that x(S(I)) ✓ cell([I]1) \ cell([I]2).
Thus, the position components of the states in S(I) lie on
the boundary between the first and second cells associated
with the ordered H-tuple I . Next let Q(J) ⇢ D be a set
of states such that x(Q(J)) ✓ cell([J]1) \ cell([J]2) and
for every state ⇠0 2 Q(J) there exists tf 2 R+ and an
admissible control input u 2 U[0,tf] such that x(⇠(t; ⇠0, u)) 2SH+1

k=1 cell([J]k), for all t 2 [0, tf]. Informally, Q(J) is
the set of all states whose position components lie on
the boundary between the first and second cells associated
with J , and such that the traversal of the geometric region
defined by the cells associated with J is possible from any
initial state within Q(J).

Next, let R : D ! 2D be a reachability map associated
with the sets S(I), defined by

R(⇠0) :=

8
<

:⇠t 2 D : ⇠t 2
[

t2R+

[

u2U[0,t]

[

⇠02S(I)

⇠(t; ⇠0, u),

and
[

⌧2[0,t]

x(⇠(⌧ ; ⇠0, u))
\

cell([I]2) = ?

9
=

; , (3)

where ⇠0 2 S(I) and 2D is the collection of all subsets of D.
Finally, for an element (I, J) of EH , let Ŝ(I, J) := {⇠ 2
S(I) : R(⇠)\Q(J) 6= ?}. For a path ⇡ = {j0, . . . , jP } in G,
let Ik := (jk�H�1, . . . , jk�1) for each k 2 {H + 1, . . . , P}.
Clearly, (Ik, Ik+1) 2 EH . The function g̃H and the set
association S(·) are iteratively defined as follows:

S(Ik+1) :=
[

⇠02Ŝ(Ik,Ik+1)

(R(⇠0) \Q(Ik+1)) , (4)

g̃H(Ik, Ik+1) :=

⇢
�, if S(Ik+1) = ?,
1, otherwise, (5)

with S(IH+1) := ⇠init, where ⇠init 2 D is a prespecified
initial state of the system �. Algorithms for computing the
sets S(·),Q(·) and R(·) for the Dubins car kinematic model
(a model of a vehicle that moves forwards only at a constant
speed with a fixed minimum turn radius) are provided in [25].

III. INCREMENTAL PATH REPAIR

The proposed incremental planning algorithm is motivated
by the following property of the transition cost function.

Proposition 1. Let ⇡ = {j0, . . . , jP } be a path in the
graph G such that JH(⇡) < �. Let IHk 2 VH be vertices
defined by IHk := (jk�H , . . . , jk) , for k 2 {H, . . . , P}. Then
for each ` 2 {H + 2, . . . , P}, either

g̃H+1(I
H+1
`�1 , IH+1

`) = �, or

g̃H+1(I
H+1
`�1 , IH+1

`) 6 g̃H(IH`�2, I
H
`�1) + g̃H(IH`�1, I

H
`).

If g̃H , H > 0, are coarse transition cost functions, then the
preceding inequality reduces to an equality:

g̃H+1(I
H+1
`�1 , IH+1

`) = g̃H(IH`�2, I
H
`�1) + g̃H(IH`�1, I

H
`).

Proof. Omitted for lack of space.

By definition, the sequence of vertices in V defined by the
edge (IH+1

`�1 , IH+1
`) 2 EH+1 is the same as that defined by

the successive edges (IH`�2, I
H
`�1), (I

H
`�1, I

H
`) 2 EH . Also,

for each H > 0 and k 2 {H, . . . , P}, the vertex IH` belongs
to the path ⇡H = bH0 (⇡). Proposition 1 states that either the
edge (IH+1

`�1 , IH+1
`) in graph GH+1 is infeasible for traversal,

or the transition cost of this edge is no greater than the sum
of the transition costs of the successive edges (IH`�2, I

H
`�1)

and (IH`�1, I
H
`) in graph GH , for each ` 2 {H + 2, . . . , P}.

Therefore, either JH+1(⇡) > � or JH+1(⇡) 6 JH(⇡).
Informally, this observation about JH+1(⇡) means that

a path ⇡ in G, upon “further scrutiny” with higher values
of the parameter H , will either be infeasible for traversal
by trajectories of the vehicle dynamical system model �, or
the cost of this traversal can potentially be reduced. Stated
differently, Prop. 1 implies that is that it is desirable to use
as large a value of the parameter H as possible, e.g. H =
H̄ = diam(G) in the search for an optimal high-level plan.
However, it is computationally impractical to do so, because
the number of vertices in GH increases exponentially with H .

To address this issue, we propose an incremental algorithm
to search for a H̄-cost optimal path in G. The main idea is
to seed the search for this path with a path that is optimal
in the graph G0. The proposed algorithm uses a path repair
procedure that replaces edges that are either infeasible or of
high cost in lifted graphs. Starting with H = 0 (or any other
small integer value of H that is convenient for computation
of the initial path), the proposed algorithm incrementally
progresses to higher values of H .

A precise description of the proposed incremental H-cost
motion-planning algorithm is provided in Fig. 3. For sim-
plicity of exposition, the algorithm in Fig. 3 considers coarse
transition cost functions, and it can accommodate refined cost
functions with no modifications in principle. In Section IV-B,

Incremental H-cost Motion-planning Algorithm
procedure MAIN

1: H 0, n 0
2: ⇡0

0 argmin⇡2L⇤
0(jS,jG){J0(⇡)}

3: H H + 1
4: while H H̄ do
5: Pn (number of vertices of ⇡0

n) �1
6: IHk , k 2 {H, . . . , Pn} defined as in Prop. 1
7: if JH(⇡0

n) < � then
8: for k = Pn � 1, Pn � 2, . . . , 0 do
9: if min&2L⇤

H(IH
k ,IH

Pn
){JH(&)} <

PPn

`=k+1 g̃H(IH`�1, I
H
`) then

10: ⇡H
n+1 path in GH obtained by replacing

with argmin&2L⇤
H(IH

k ,IH
Pn

){JH(&)} the edges
between IHk and IHPn

in path bH0 (⇡0
n)

11: ⇡0
n+1 b0H(⇡H

n+1)
12: n n+ 1
13: H H + 1
14: else
15: k⇤ argmin{k 2 {H + 1, . . . , Pn} :

g̃H(IHk�1, I
H
k) = �}

16: {&⇤, `⇤} PATH-REPAIR(k⇤)
17: ⇡H

n+1 path in GH obtained by replacing with &⇤
the edges between IHk⇤�1 and IH`⇤ in path bH0 (⇡0

n)
18: ⇡0

n+1 b0H(⇡H
n+1)

19: n n+ 1

procedure PATH-REPAIR(k⇤)
1: for ` = k⇤, . . . , Pn do
2: &⇤ argmin{& 2 L⇤

H(IHk⇤�1, I
H
`)}

3: if JH(&⇤) < � then
4: Return (&⇤, `⇤ = `)

Fig. 3. Pseudocode description of the proposed incremental algorithm for
solving the H-cost optimal path problem.

we discuss some aspects of practical implementations using
refined transition costs. In Fig. 3, the algorithm is initialized
in Lines 1–2 by searching for a “seed” path in graph G0 with
prespecified initial and goal vertices jS, jG 2 V. The result
of the algorithm at the nth iteration, where n 2 Z+, is a
path ⇡0

n in G from the initial vertex jS to the goal vertex jG.
Lines 4–19 describe the iterative process of the algorithm as
it progresses through increasing values of H . Whenever H
is incremented and an infeasible edge in detected in GH , the
algorithm replaces this infeasible edge with a subpath with
finite H-cost, as described in Lines 15–19. The path repair
procedure in Line 16 computes this subpath from the vertex
immediately before the infeasible edge to any of the vertices
between the infeasible edge and the goal. In Lines 8–11,
the algorithm attempts to find paths of lower cost between
intermediate vertices of the currently known path and the
goal vertex. This step is necessary because the “patching” of
subpaths in Line 17 can lead to suboptimal paths. However,
in practical implementations, for the sake of speed Lines 9-

11 need be executed only for high values of H , or they can
be executed after completing the while loop of Line 4.

The optimization involved in Line 2 of the PATH-REPAIR
procedure can be performed by an algorithm similar to the
H-cost optimal path-planning algorithm described in [11].
Because the number of vertices in GH separating IHk⇤�1 2 VH

and IH` 2 VH is small, the search for a subpath between these
vertices is fast.

The pseudocode provided in Fig. 3 omits for the sake
of simplicity some obvious exceptions. For example, if no
path with H-cost less than � exists in the graph G, then the
procedure PATH-REPAIR will be unable to find a subpath &⇤,
and the algorithm resolves this exception by reporting failure.

The result of this algorithm is the path returned at either
Line 11 or Line 18 of the final iteration of the algorithm.
Whereas the algorithm terminates after a finite number of
iterations (as we show next), its execution can be forcibly
halted after Line 19 at any an intermediate iteration n before
the algorithm’s natural termination. Crucially, despite such
a forcible termination, the algorithm returns a path ⇡0

n in
graph G which is feasible for traversal (i.e. has H-cost
less than �), assuming such a path exists. This property
of the algorithm of having ready a feasible path at the end
of any iteration is highly desirable in real-time application,
especially in light of the fact that the algorithm eventually
finds a H̄-cost optimal path.

The following result further highlights the merits of the
proposed algorithm: not only does the algorithm eventually
converge to an H̄-cost optimal path, but the H-costs of paths
found in intermediate iterations are nonincreasing. Whenever
H is incremented (Line 13), there is a possibility that the
transition costs of some edges in GH+1 become higher
than �, and therefore the trend nonincreasing costs can be
interrupted.

Proposition 2. For a fixed value of the parameter H ,
whenever Lines 8–12 of Fig. 3 are executed, JH(⇡0

n+1) 6
JH(⇡0

n), for each n 2 Z+.

Proof. Immediately obvious by construction of ⇡0
n+1 in

Lines 10–11 of Fig. 3.

Next, we state the main result of this paper.

Proposition 3. The proposed algorithm as described in
Fig. 3 terminates after a finite number of iterations. Upon
termination, the following statements hold true:
1) If, for some H̃ 6 H̄ , there exists no path in graph G with

H̃-cost less than �, then the algorithm reports failure.
2) If there exists at least one path in graph G with H̄-

cost less than �, then the algorithm returns a path with
minimum H̄-cost.

Proof. Every iterative loop in the proposed algorithm in
Fig. 3 has a finite termination condition. Therefore the overall
algorithm must terminate in a finite number of iterations.

Case 1) Suppose for some H̃ 6 H̄ , there exists no path
in graph G with H-cost less than � and assume (without
loss of generality) that H̃ is the smallest such value of the

parameter H . Suppose that the algorithm increments the
value of the parameter H from H̃ � 1 to H̃ at the nth

iteration. Then JH̃(⇡0
n) > �, and in the next iteration the

algorithm executes Lines 7 and 15. At Line 15, the PATH-
REPAIR must report failure because a subpath satisfying the
condition in Line 3 of the PATH-REPAIR procedure does not
exist. Then the overall algorithm also reports failure.

Case 2) Suppose there exists at least one path in graph G
with H̄-cost less than �. Then there exists a path in graph
G with minimum H̄-cost, because the number of such paths
is finite, in turn because the numbers of vertices and edges
in G are finite. According to the termination condition in
Line 4, the overall algorithm terminates when H = H̄ . For
any particular value of H , the final iteration of the for loop
in Line 8 results in an H-cost optimal path. In particular, it
results in the H̄-cost optimal path.

Remark: It is important to note that the proposed
algorithm does not reduce the complexity of the H-cost
optimal path problem, as is evident from the proof of Prop. 3.
However, the proposed algorithm ensures that the search
for the H̄-cost optimal path does not proceed in a “all or
nothing” manner. Specifically, it makes available a feasible
solution during intermediate iterations. Also, in practice, the
for loop in Line 8 will terminate much earlier than the
stated termination condition of k = 0. As evident from the
preceding proof, the execution of Lines 8–12 can be executed
only for H = H̄ , without affecting the truth of Prop. 3.

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

Figure 4 illustrates the execution of the proposed algo-
rithm. Here, the prespecified initial and goal vertices are
indicated, respectively, by the green- and red-colored vertices
in Fig. 4(a). The path between the initial and final vertices
highlighted in Fig. 4(a) is a 0-cost optimal path, i.e., it is
found by solving the standard optimal path problem on G0,
where edge transition costs are defined as the Euclidean
distances between cells. The algorithm progresses to higher
values of H , and when H = 3, the 3-cost of the path is
found (Line 7 of the algorithm in Fig. 3) to be greater than or
equal to �. In particular, the transition cost of a single edge,
illustrated in red in Fig. 4(b) is found to be equal to �. In
this example, H-costs are defined by Eqns. (4) and (5) for a
Dubins car kinematic model with unit minimum turn radius.
The edge with transition cost � is replaced by the PATH-
REPAIR procedure. The subpath &⇤ computed by the PATH-
REPAIR procedure is indicated in green color in Fig. 4(c).
Next, the 4-cost of the new path is found to be greater than or
equal to � (Fig. 4(d)) and it is again replaced by a subpath by
the PATH-REPAIR procedure (Fig. 4(e)). The repaired path
is found to have 6-cost less than �, and at H = 6, the
cost reduction steps in Lines 8-11 of the algorithm in Fig. 3
are executed to arrive at a 6-cost optimal path as shown
in Fig. 4(f). The yellow-colored cells in Fig. 4 indicate the
vertices explored by the PATH-REPAIR procedure during its
computations to find a subpath (Line 16 in Fig. 3).

Figure 6 illustrates a more striking example of application
the proposed algorithm. Here, a 4-cost feasible path is found

(a) Initial path ⇡0
0 in G0. (b) An infeasible edge (red) in G3.

(c) Path repair in G3. (d) An infeasible edge (red) in G4.

(e) Path repair in G4. (f) Cost reduction in G6.

Fig. 4. Illustrative example of solution of the H-cost optimal path problem
using incremental path repair.

quickly, and in further iterations, the algorithm finds paths of
lower 4-cost. A feasible path is provided during intermediate
iterations, and an optimal is eventually found.

A. Application to Replanning with Environmental Changes

In the geometric path-planning literature, anytime incre-
mental algorithms such as LPA⇤ [26] have been discussed
for fast replanning of shortest (by Euclidean distance) paths
when small changes in the environment are detected. These
changes can result due to, say, moving obstacles or improved
perception of the environment. The proposed incremental
algorithm serves the purpose of replanning H-cost optimal
paths in response to such changes in the environment.
Specifically, when coarse transition costs are considered,
the current H-cost feasible or optimal path can become
infeasible (i.e., its cost can increase beyond �) if changes
in the environment cause a cell in the current path to be
blocked by an obstacle. The proposed algorithm can detect
such a change in Line 7 of Fig. 3, and the rest of the repair
procedure is executed as before.

Figure 5 illustrates an example of this replanning applica-
tion of the proposed algorithm. The initial and goal vertices
are indicated in Fig. 5(a) by green- and red-colored cells.
The black-colored cells indicate obstacles. As illustrated in

(a) Initial path. (b) Change in environment results
in an infeasible edge (red) in G1.

(c) Path repair in G1. (d) An infeasible edge in G3.

(e) Path repair in G3. (f) Cost reduction in G6.

Fig. 5. Illustrative example of replanning in response to changes in the
environment.

Fig. 5(b), a change in the location of obstacles makes infea-
sible for traversal the initial path ⇡0

0 illustrated in Fig. 5(a).
In Fig. 5(a), the algorithm has already progressed to H = 1,
and due to the change in the environment, the 1-cost of the
initial path is found to be higher than �. The PATH-REPAIR
procedure finds a subpath, indicated in green in Fig. 5(c). In
a later iteration, the 3-cost of the new path is found higher
than �; in particular one edge (indicated in red in Fig. 5(d))
is found to have cost �. The PATH-REPAIR procedure finds a
subpath in G3 to replace this edge, as indicated by the green-
colored subpath in Fig. 5(e). The repaired path is found to
have 6-cost less than � and at H = 6, the cost reduction
steps in Lines 8-11 of Fig. 3 are executed to arrive at a 6-
cost optimal path as shown in Fig. 5(f).

Notice that in each of the two preceding examples, a 6-
cost1 feasible path is available in iterations before the optimal
path is found. In real-time applications, this property can be
used to enforce hard bounds on the computation time: the
proposed algorithm will report a feasible path in the available
computation time. By Prop. 3, if the algorithm is allowed
sufficient computation time, it will converge to an optimal
path, and by Prop. 2, the resultant H-costs are nonincreasing
in all intermediate iterations except, possibly, in iterations
where H is incremented.

1In these particular examples, 6-cost feasible paths were found to be
feasible for all higher values of H .

B. Further Discussion of the Proposed Algorithm

As previously stated, refined transition costs can be as-
signed to H-histories, for example by solving a local tra-
jectory optimization problem. The proposed algorithm as
described in Fig. 3 is applicable, in principle, when refined
transition cost functions are used. In practical implementa-
tions, however, the cost reduction steps in Lines 8–12 will
slow down the overall algorithm because a large number of
alternatives for cost reduction may be available, especially
when the original graph G has a large number of vertices.
To alleviate this problem, two modifications can be made
to the algorithm in Fig. 3 without changing its theoretical
properties. First, Lines 8–12 can be programmed to execute
only for certain high values of H larger than a user-specified
threshold. Second, Lines 8–12 can be programmed to execute
only if the cost of edges to be replaced is higher than a certain
user-specified threshold " > 0. Specifically, Line 9 in Fig. 3
can be replaced by the following:

if min&2L⇤
H(IH

k ,IH
Pn

){JH(&)} <
PPn

`=k+1 g̃H(IH`�1, I
H
`)

and g̃H(Ik, Ik+1) > " then

The proposed algorithm retains all of the merits of the H-
cost motion-planning technique discussed in [11]. Therein,
thorough comparisons of the H-cost technique with other
motion-planning techniques including randomized sampling-
based techniques are available. Furthermore, in [27], the
H-cost motion-planning technique was implemented with
multiresolution cell decompositions. Because the proposed
algorithm does not affect the type of cell decompositions
used to construct the graph G, multiresolution implementa-
tions of the proposed algorithm can be easily developed in
a manner similar to that discussed in [27].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed an incremental algorithm
for hierarchical motion-planning based on the previously
developed H-cost motion-planning technique. The H-cost
technique has been shown to be useful in the tight integra-
tion of the solutions of a high-level discrete task-planning
problem with a low-level continuous trajectory generation
problem. Whereas it is beneficial to use high values of
the parameter H , the complexity of the H-cost optimal
path problem increases exponentially with H . The proposed
algorithm alleviates this high computational cost by making
available a feasible solution at intermediate iterations We
proved that the proposed algorithm is guaranteed to converge
to an optimal solution given enough computation time (i.e.
after a sufficiently large number of iterations). Furthermore,
the cost of the solutions available in intermediate iterations
of the proposed algorithm is always nonincreasing except,
possibly, at a finite number of special iterations (i.e. when H
is incremented). We illustrated the proposed algorithm using
numerical simulation examples. Future work includes the
extension of the proposed algorithm to the solution of more
general task-planning problems, e.g. high-level specifications
described using logic formulae.

(a) Initial path. (b) H = 2-cost feasible path.

(c) H = 4-cost feasible path. (d) Reduced 4-cost feasible path.

(e) Reduced 4-cost feasible path. (f) 4-cost optimal path.

Fig. 6. Illustrative example: during intermediate iterations, feasible
solutions are available, whereas the solution cost is reduced.

Acknowledgments: The research reported in this paper
was supported in part by startup funds provided by WPI
to the second author, and in part by US Air Force Small
Business Innovation Research (SBIR) contract #FA8501-
14-P-0034, WPI sub-contract #AFS14-1186 from Aurora
Flight Sciences Corp., Cambridge MA. We thank Jeffrey T.
Chambers, Ph.D., Program Manager at Aurora.

REFERENCES

[1] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic planning and control of robot motion,” IEEE
Robotics and Automation Magazine, pp. 61 – 70, March 2007.

[2] Z. Shiller and Y.-R. Gwo, “Dynamic motion planning of autonomous
vehicles,” IEEE Transactions on Robotics and Automation, vol. 7,
no. 2, pp. 241–249, 1991.

[3] D. Zhu and J.-C. Latombe, “New heuristic algorithms for efficient
hierarchical path planning,” IEEE Transactions on Robotics and Au-
tomation, vol. 7, no. 1, pp. 9–20, 1991.

[4] S. R. Cunha, A. C. de Matos, and F. L. Pereira, “An automatic path
planning system for autonomous robotic vehicles,” in Proceedings of
the IECON ’93 International Conference on Industrial Electronics,
Control, and Instrumentation, (Maui, HI, USA), pp. 1442–1447,
November 1993.

[5] J.-P. Laumond, M. Taix, P. Jacobs, and R. M. Murray, “A motion
planner for nonholonomic mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 10, no. 5, pp. 577–593, 1994.

[6] M. Cherif, “Kinodynamic motion planning for all-terrain wheeled
vehicles,” in Proceedings of the 1999 IEEE International Conference
on Robotics and Automation, (Detroit, MI.), pp. 317 – 322, May 1999.

[7] D. Coombs, K. Murphy, A. Lacaze, and S. Legowik, “Driving au-
tonomously offroad up to 35 km/h,” in Proceedings of the 2000
International Vehicles Conference, 2000.

[8] A. Rosiglioni and M. Simina, “Kinodynamic motion planning,” in Pro-
ceedings of the IEEE Conference on Systems, Man, and Cybernetics,
vol. 3, pp. 2243–2248, 2003.

[9] B. Mettler and E. Bachelder, “Combining on- and offline optimization
techniques for efficient autonomous vehicle’s trajectory planning,” in
Collection of Technical Papers - AIAA Guidance, Navigation, and
Control Conference 2005, vol. 1 of 499–511, 2005.

[10] R. A. Brooks and T. Lozano-Pérez, “A subdivision algorithm in
configuration space for findpath with rotation,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-15, pp. 224–233, Mar–Apr
1985.

[11] R. V. Cowlagi and P. Tsiotras, “Hierarchical motion planning with
dynamical feasibility guarantees for mobile robotic vehicles,” IEEE
Transactions on Robotics, vol. 28, no. 2, pp. 379 – 395, 2012.

[12] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88,
pp. 971–984, July 2000.

[13] P. Tabuada, “Controller synthesis for bisimulation equivalence,” Sys-
tems and Control Lett., vol. 57, pp. 443–452, June 2008.

[14] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” IEEE Trans-
actions on Robotics, vol. 21, pp. 864 – 874, October 2005.

[15] G. E. Fainekos, A. Girard, and G. J. Pappas, “Hierarchical synthesis
of hybrid controllers from temproal logic specifications,” in Hybrid
Systems: Computation and Control (A. Bemporad, A. Bicchi, and
G. Buttazzo, eds.), LNCS 4416, pp. 203 – 216, 2007.

[16] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, pp. 287–297, February 2008.

[17] X.-C. Ding, M. Lazar, and B. C, “Formal abstraction of linear systems
via polyhedral Lyapunov functions,” in Proceedings of the 4th IFAC
Conference on Analysis and Design of Hybrid Systems (ADHS),
(Eindhoven, The Netherlands), Jun 6–8 2012.

[18] M. Lahijanian, S. B. Andersson, and C. Belta, “Temporal logic motion
planning and control with probabilistic satisfaction guarantees,” IEEE
Transactions on Robotics, vol. 28, no. 2, pp. 396–409, 2012.

[19] X. C. Ding, M. Lazar, and C. Belta, “Receding horizon temporal logic
control for finite deterministic systems,” in Proceedings of the 2012
American Control Conference, (Montréal, Canada), pp. 715–720, Jun
27–29 2012.

[20] M. Svorenova, I. Cerna, and C. Belta, “Optimal receding horizon con-
trol for finite deterministic systems with temporal logic constraints,” in
Proceedings of the 2013 American Control Conference, (Washington,
DC, USA), pp. 4399 – 4404, Jun 17–19 2013.

[21] A. Stentz, “The focussed D⇤ algorithm for real-time replanning,”
in Proceedings of the International Joint Conference on Artificial
Intelligence, vol. 95, pp. 1652–1659, 1995.

[22] T. Wongpiromsarn, V. G. Rao, and R. D. D’Andrea, “Two approaches
to dynamic refinement in hierarchical motion planning,” in Proceed-
ings of the AIAA Guidance, Navigation, and Control Conference and
Exhibit, (San Francisco, CA, USA), Aug 15–18 2005.

[23] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1.
Athena Scientific, Belmont, MA, 2000.

[24] R. V. Cowlagi and D. N. Kordonowy, “Geometric abstractions of
vehicle dynamical models for intelligent autonomous motion,” in
Proceedings of the 2014 American Control Conference, (Portland,
OR.), pp. 4840–4845, Jun 4 – 6 2014.

[25] R. V. Cowlagi and P. Tsiotras, “Curvature-bounded traversability
analysis for motion planning of mobile robots,” IEEE Transactions
on Robotics, 2014. in press.

[26] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic
search in AI,” Artificial Intelligence Magazine, vol. 25, pp. 99–112,
2004.

[27] R. V. Cowlagi and P. Tsiotras, “Multi-resolution motion planning
for autonomous agents via wavelet-based cell decompositions,” IEEE
Transactions on Systems, Man and Cybernetics: Part B - Cybernetics,
vol. 42, no. 5, pp. 1455–1469, 2012.

	Introduction
	Problem Formulation
	Vehicle Model
	Lifted Graph
	Assignment of Transition Costs to Histories

	Incremental Path Repair
	Illustrative Examples and Discussion
	Application to Replanning with Environmental Changes
	Further Discussion of the Proposed Algorithm

	Conclusions and Future Work
	References

